

Universidade do Porto

Estudo da aplicação de consolidantes e hidrófugos em pedras graníticas da Igreja Matriz de Caminha

Alexandra Cristina de Oliveira Tavares Fojo MRPE 2006

AGRADECIMENTOS

Desejo expressar os meus agradecimentos a todos os que contribuíram para que fossem atingidos os objectivos propostos neste trabalho. Em particular agradeço:

Ao Professor Arlindo Begonha, sob cuja orientação decorreu a realização do presente trabalho, pelos seus ensinamentos e rigor científico, empenho, amizade e estímulo permanente.

Ao Senhor Fernando Hora, do Laboratório de Ensaio de Materiais da Faculdade de Engenharia da Universidade do Porto pela recolha das amostras e ajuda na realização do ensaio de envelhecimento acelerado.

À Senhora D^a. Maria Teresa Pinto da Secção de Materiais de Construção por toda a colaboração prestada.

À Senhora D^a. Maria de Lurdes Lopes da Secção de Construções Civis pela disponibilidade permanente e informação fornecida.

Ao Instituto Português do Património Arquitectónico (IPPAR), ao qual se deve a realização deste trabalho, pela autorização concedida para a recolha de amostras.

Às firmas BIU International e Brightstone pelo fornecimento das amostras, respectivamente dos produtos consolidantes Tegovakon V e HMK S 41.

Às empresas Sika e Silicem - HB Química pelo fornecimento das amostras dos hidrófugos Sikagard 700 S e HB Siliker S 101, respectivamente.

RESUMO

O presente trabalho tem como objectivo principal estudar a eficácia da aplicação de produtos hidrófugos e consolidantes em pedras graníticas da Igreja Matriz de Caminha a curto e a longo prazo.

Para tal, desenvolveu-se um trabalho experimental, utilizando-se amostras dos dois tipos de granito existentes no monumento (granito de duas micas de grão médio e microgranito de duas micas), e dos dois tipos de produtos hidrófugos e dos dois tipos de produtos consolidantes.

Procurou-se proceder ao estudo do meio poroso das pedras graníticas da igreja, recorrendo a um conjunto de ensaios, designadamente de determinação da densidade aparente, da porosidade livre às quarenta e oito horas, da porometria com o porosímetro de mercúrio, da absorção de água por capilaridade, da evaporação e da profundidade de penetração em amostras sem e com a aplicação de produtos de tratamento e também após a realização de ensaios de envelhecimento.

O trabalho experimental desenvolvido permitiu, não só definir quais as principais vantagens e inconvenientes que advêm da aplicação dos quatro produtos de tratamento nos provetes de granito do monumento, mas também referir qual o produto hidrófugo e qual o produto consolidante mais adequados ao tratamento das pedras graníticas da Igreja de Nossa Senhora da Assunção, Matriz de Caminha.

ABSTRACT

The main purpose of this work is to study the application effectiveness of water repellents products and of consolidating products in the granitic stones of the Church of "Nossa Senhora da Assunção, Matriz de Caminha" for a short and a long term period.

Therefore, an experimental work was developed, using two types of granite used in the monument (a two-mica medium grained granite and a two-mica microgranite), and two water repellents products and two consolidating products.

In order to characterize the porous network of the granitic stones of the church, bulk density, free porosity, porometry using the mercury porosimetry, water capillary absorption, evaporation and penetration depth tests were carried out in samples without and with the application of the treatment products as well as after the realization of accelerated aging essays.

The experimental work allowed, not only to define the main advantages and disadvantages resulting from the application of the four treatment products in the granitic samples of the monument, but also to indicate the most appropriate water repellent product and the most appropriate consolidating product to the treatment of the granitic stones of the "Matriz de Caminha" Church.

ÍNDICE GERAL

	Página
AGRADECIMENTOS	I
RESUMO	Ш
ABSTRACT	V
ÍNDICE GERAL	VII
ÍNDICE DE QUADROS	XI
ÍNDICE DE FIGURAS	XXVII
ÍNDICE DE SÍMBOLOS	XLIII
INTRODUÇÃO GERAL	1
CAPÍTULO 1 IGREJA DE NOSSA SENHORA DA ASSUNÇÃO, MATRIZ DE CAMINHA	3
1.1 Enquadramento geológico	3
1.2 Breve história e descrição da Igreja de Nossa Senhora da Assunção, Matriz de Caminha	6
1.3 Intervenções no Monumento	8
1.4 Estado de Conservação	12
CAPÍTULO 2 TRABALHO EXPERIMENTAL REALIZADO	19
2.1 Introdução	19
2.2 Amostragem	20
2.3 Técnicas experimentais	25
2.3.1 Determinação da densidade aparente	26
2.3.2 Determinação da porosidade livre às quarenta e oito horas	26

	Página
2.3.3 Ensaio de determinação da porometria com porosímetro de mercúrio	26
2.3.4 Ensaio de absorção de água por capilaridade	29
2.3.5 Ensaio de evaporação	35
2.3.6 Aplicação dos produtos consolidantes	41
2.3.7 Aplicação dos produtos hidrófugos	44
2.3.8 Ensaios de envelhecimento acelerado	46
2.3.9 Profundidade de penetração dos produtos consolidantes	47
2.4 Resultados dos ensaios realizados	50
2.4.1 Densidade aparente	50
2.4.1.1 Antes da aplicação dos produtos de tratamento	50
2.4.2 Porosidade livre às quarenta e oito horas	52
2.4.2.1 Antes da aplicação dos produtos de tratamento	52
2.4.2.2 Após a aplicação dos produtos de tratamento	56
2.4.2.3 Após ensaio de envelhecimento acelerado	59
2.4.3 Porometria	61
2.4.3.1 Antes da aplicação dos produtos de tratamento	61
2.4.3.2 Depois da aplicação dos produtos de tratamento	66
2.4.3.3 Após ensaio de envelhecimento acelerado	74
2.4.4 Absorção de água por capilaridade	84
2.4.4.1 Antes da aplicação dos produtos de tratamento	84
2.4.4.2 Depois da aplicação dos produtos de tratamento	93
2.4.4.3 Após ensaio de envelhecimento acelerado	100
2.4.5 Evaporação	107
2.4.5.1 Antes da aplicação dos produtos de tratamento	107

	Página
2.4.5.2 Depois da aplicação dos produtos de tratamento	113
2.4.5.3 Após ensaio de envelhecimento acelerado	122
2.4.6 Profundidade de penetração	132
2.5 Análise dos resultados	141
CONCLUSÕES	147
REFERÊNCIAS	149
ANEXO 1	159
ANEXO 2	175

ÍNDICE DE QUADROS

CAPÍTULO 2 TRABALHO EXPERIMENTAL REALIZADO	24
Quadro 2.1 Indicação para cada tarolo, da sua localização, cota e data de extracção e designação dos provetes a que deram origem, tipo de granito e suas respectivas características geométricas.	24
Quadro 2.2 Indicação da proveniência de cada patela, designação atribuída e designação de cada terça parte de patela obtida.	25
Quadro 2.3 Provetes cilíndricos, sua designação após aplicação do produto de tratamento consolidante e indicação deste.	43
Quadro 2.4 Partes das patelas e seu respectivo tratamento consolidante aplicado.	44
Quadro 2.5 Indicação do produto hidrófugo aplicado em cada provete e designação deste, antes e após a aplicação do produto de tratamento.	45
Quadro 2.6 Designações dos provetes cilíndricos e respectivo tipo de granito após terem estado submetidos a tratamento e ensaios de envelhecimento acelerado e seu respectivo produto de tratamento aplicado.	49
Quadro 2.7 Designações das terceiras partes das patelas após terem estado submetidas a tratamento e ensaios de envelhecimento acelerado.	50
Quadro 2.8 Valores da densidade aparente (d) nos provetes cilíndricos de granito de duas micas de grão médio e de microgranito de duas micas.	51
Quadro 2.9 Valores mínimos e máximos da densidade aparente (d), obtidos em granitos de duas micas de monumentos e edifícios do Norte de Portugal.	52
Quadro 2.10 Valores da porosidade livre às quarenta e oito horas nos provetes cilíndricos de granito de duas micas de grão médio e de microgranito de duas micas.	53
Quadro 2.11 Valores limite da porosidade livre às quarenta e oito horas (N_{48}) obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.	54
Quadro 2.12 Valores de N ₄₈ antes e após a aplicação dos produtos de tratamentos; variação percentual média de N ₄₈ (Δ N _{48T}) para cada provete, produto de tratamento, conjunto dos dois produtos hidrófugos e conjunto dos dois produtos consolidantes.	57
Quadro 2.13 Valores de N ₄₈ antes e após a realização dos ensaios de envelhecimento; variação percentual média de N ₄₈ (Δ N _{48E}) para cada provete, produto de tratamento, conjunto dos dois produtos hidrófugos e conjunto dos dois produtos consolidantes.	60

Quadro 2.15 Valores limite da porosidade total ao mercúrio (N_{Hg}) obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.	63
Quadro 2.16 Valores limite da razão entre a microporosidade (N_{μ}) e a porosidade total ao mercúrio (N_{Hg}) obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.	63
Quadro 2.17 Valores limite dos diâmetros de acesso das principais famílias de poros de granitos de duas micas usados em monumentos e edifícios do Norte de Portugal.	65
Quadro 2.18 Resultados obtidos com o porosímetro de mercúrio nas patelas sujeitas a tratamento.	66
Quadro 2.19 Valores de N _{Hg} antes e depois da aplicação dos tratamentos; variação percentual média de N _{Hg} (ΔN_{HgT}) para cada patela, consolidante e conjunto dos dois consolidantes.	67
Quadro 2.20 Valores limite das variações percentuais médias do valor da porosidade total ao mercúrio obtidos em granitos de duas micas empregues em São Pedro de Rates (Begonha, 2003a).	69
Quadro 2.21 Valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio antes e depois da aplicação dos tratamentos; variação percentual média da percentagem da microporosidade relativamente à porosidade total ao mercúrio para cada consolidante e para o conjunto dos dois consolidantes.	69
Quadro 2.22 Valores limite das variações do valor da percentagem da microporosidade relativamente à porosidade total ao mercúrio $(100 \times (N_{\rm vt}/N_{\rm Ha} - N_{\rm vt}/N_{\rm Ha})/N_{\rm vt}/N_{\rm Ha})$ obtidos em	70

Quadro 2.14 Resultados obtidos com o porosímetro de mercúrio (patelas de granito de

grão médio e de microgranito).

0 (relativamente à porosidade total ao mercurio ($100 \times (N_{\mu T}/N_{HgT} - N_{\mu}/N_{Hg})/N_{\mu}/N_{Hg}$) obtidos em granitos de duas micas empregues em São Pedro de Rates (Begonha, 2003a).

Quadro 2.23 Diâmetros de acesso das famílias de poros dos dois granitos antes e depois da 71 aplicação dos dois consolidantes.

Quadro 2.24 Resultados obtidos com o porosímetro de mercúrio.

Quadro 2.25 Valores de N_{Ha} antes e depois da realização dos ensaios de envelhecimento; 75 variação percentual média de N_{Hq} (ΔN_{HqE}) para cada patela, produto consolidante, conjunto dos dois consolidantes.

Quadro 2.26 Valores da percentagem da microporosidade relativamente à porosidade total 77 ao mercúrio antes e depois dos ensaios de envelhecimento; variação percentual média da razão entre a microporosidade e a porosidade total ao mercúrio $(\Delta(N_u/N_{Ha})_E)$, para cada patela, consolidante e para o conjunto dos dois consolidantes.

Ouadro 2.27 Diâmetros de acesso das famílias de poros dos dois granitos antes e depois da 78 aplicação dos dois consolidantes e após os ensaios de envelhecimento.

Página

62

75

	Página
Quadro 2.28 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos.	85
Quadro 2.29 Valores limite do coeficiente de capilaridade A obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.	87
Quadro 2.30 Valores limite do coeficiente de capilaridade B obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.	93
Quadro 2.31 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos depois da aplicação dos diversos tratamentos.	94
Quadro 2.32 Valores do coeficiente de capilaridade A antes e depois da aplicação dos tratamentos; variação percentual média de A (ΔA_T) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e o conjunto dos dois consolidantes.	96
Quadro 2.33 Valores do coeficiente de capilaridade B antes e depois da aplicação dos tratamentos; variação percentual média de B (ΔB_T) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	99
Quadro 2.34 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos depois da aplicação dos diversos tratamentos e após os ensaios de envelhecimento.	101
Quadro 2.35 Valores do coeficiente de capilaridade A antes e depois da realização dos ensaios de envelhecimento; variação percentual média de A (ΔA_E) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	103
Quadro 2.36 Valores do coeficiente de capilaridade B antes e depois da realização dos ensaios de envelhecimento; variação média de B (ΔB_T) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	106
Quadro 2.37 Resultados dos ensaios de evaporação nos provetes cilíndricos antes dos tratamentos.	108
Quadro 2.38 Resultados dos ensaios de evaporação obtidos nos provetes cilíndricos após os tratamentos.	114
Quadro 2.39 Valores do fluxo de evaporação antes (q) e depois (q _T) da aplicação dos tratamentos; variação percentual média (Δ_{qT}) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	118
Quadro 2.40 Valores da saturação crítica antes (S_c) e após (S_{cT}) a aplicação dos tratamentos; variação percentual média (ΔS_{cT}) em cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	120
Quadro 2.41 Valores do tempo em que a saturação crítica é antigida antes (S _c) e após (S _{cT}) da aplicação dos tratamentos; variação percentual média ($\Delta t(S_{cT})$) em cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.	121

Quadro 2.42 Resultados do ensaio de evaporação obtidos nos provetes cilíndricos tratados 123 após os ensaios de envelhecimento.

Quadro 2.43 Valores do fluxo de evaporação antes (q_T) e após (q_E) os ensaios de 127 envelhecimento; variação percentual média (Δq_E) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Quadro 2.44 Valores da saturação crítica antes (S_{cT}) e depois (S_{cE}) da realização dos 129 ensaios de envelhecimento; variação percentual média (ΔS_{cE}) para cada provete, para cada produto de tratamento, para o conjunto dos dois hidrófugos e para o conjunto dos dois consolidantes.

Quadro 2.45 Valores do tempo em que a saturação crítica é antigida antes $(t(S_{cT}))$ e após 131 $(t(S_{cE}))$ a realização dos ensaios de envelhecimento; variação percentual média de $(\Delta t(S_{cE}))$ para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Quadro 2.46 Valores da profundidade de penetração para cada provete, profundidade de 133 penetração média (P_{pm}) de cada tipo de produto consolidante em cada tipo de granito e de cada produto consolidante considerando os dois tipos de granito no seu conjunto.

Quadro 2.47 Valores da profundidade de penetração dos produtos consolidantes, para cada 134 provete e para cada tipo de medição efectuada.

Quadro 2.48 Média dos valores da profundidade de penetração (P_{pm}) obtidos por medição 135 directa para cada produto consolidante aplicado.

Quadro 2.49 Média dos valores da profundidade de penetração (P_{pm}) obtidos por medição 136 no gráfico do ensaio de absorção de água por capilaridade para cada produto consolidante aplicado.

Quadro 2.50 Variações percentuais médias nos provetes da Igreja Matriz de Caminha antes 143 e após a aplicação dos produtos hidrófugos Sikagard e Siliker e antes e após a realização dos ensaios de envelhecimento.

Quadro 2.51 Variações percentuais médias nos provetes da Igreja Matriz de Caminha antes 146 e após a aplicação dos produtos consolidantes Tegovakon V e S 41 e antes e após a realização dos ensaios de envelhecimento; profundidade de penetração média.

ANEXO 2

175

Quadro A2.1 Resultados do ensaio de absorção de água por capilaridade do provete IMC 177 1.1.

Quadro A2.2 Resultados do ensaio de absorção de água por capilaridade do provete IMC 178 1.2.

Quadro A2.3 1.3.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	179
Quadro A2.4 1.4.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	180
Quadro A2.5 2.1.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	181
Quadro A2.6 2.2.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	182
Quadro A2.7 2.3.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	183
Quadro A2.8 2.4.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	184
Quadro A2.9 3.1.	Resultados do	ensaio de	absorção	de água	a por	capilaridade	do provete	e IMC	185
Quadro A2.10 3.2.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	186
Quadro A2.11 4.1.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	187
Quadro A2.12 4.2.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	188
Quadro A2.13 4.3.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	189
Quadro A2.14 4.4.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	190
Quadro A2.15 5.1.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	191
Quadro A2.16 5.2.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	192
Quadro A2.17 5.3.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	193
Quadro A2.18 5.4.	Resultados do	o ensaio de	e absorção	de águ	a por	capilaridade	do provete	e IMC	194

		Página
Quadro A2.19 6.1.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	195
Quadro A2.20 6.2.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	196
Quadro A2.21 6.3.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	197
Quadro A2.22 7.1.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	198
Quadro A2.23 7.2.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	199
Quadro A2.24 7.3.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	200
Quadro A2.25 8.1.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	201
Quadro A2.26 8.2.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	202
Quadro A2.27 8.3.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	203
Quadro A2.28 9.1.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	204
Quadro A2.29 9.2.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	205
Quadro A2.30 9.3.	Resultados do ensaio de absorção de água por capilaridade do provete IMC	206
Quadro A2.31	Resultados do ensaio de evaporação do provete IMC 1.1.	207
Quadro A2.32	Resultados do ensaio de evaporação do provete IMC 1.2.	209
Quadro A2.33	Resultados do ensaio de evaporação do provete IMC 1.3.	211
Quadro A2.34	Resultados do ensaio de evaporação do provete IMC 1.4.	213
Quadro A2.35	Resultados do ensaio de evaporação do provete IMC 2.1.	215
Quadro A2.36	Resultados do ensaio de evaporação do provete IMC 2.2.	217
Quadro A2.37	Resultados do ensaio de evaporação do provete IMC 2.3.	219

Quadro A2.38 Resultados do ensaio de evaporação do provete IMC 2.4. 221 223 Ouadro A2.39 Resultados do ensaio de evaporação do provete IMC 3.1. Quadro A2.40 Resultados do ensaio de evaporação do provete IMC 3.2. 225 Quadro A2.41 Resultados do ensaio de evaporação do provete IMC 4.1. 227 Quadro A2.42 Resultados do ensaio de evaporação do provete IMC 4.2. 229 Quadro A2.43 Resultados do ensaio de evaporação do provete IMC 4.3. 231 Quadro A2.44 Resultados do ensaio de evaporação do provete IMC 4.4. 233 Quadro A2.45 Resultados do ensaio de evaporação do provete IMC 5.1. 235 Quadro A2.46 Resultados do ensaio de evaporação do provete IMC 5.2. 237 Quadro A2.47 Resultados do ensaio de evaporação do provete IMC 5.3. 239 Quadro A2.48 Resultados do ensaio de evaporação do provete IMC 5.4. 241 Quadro A2.49 Resultados do ensaio de evaporação do provete IMC 6.1. 243 Quadro A2.50 Resultados do ensaio de evaporação do provete IMC 6.2. 245 Quadro A2.51 Resultados do ensaio de evaporação do provete IMC 6.3. 247 Quadro A2.52 Resultados do ensaio de evaporação do provete IMC 7.1. 249 Quadro A2.53 Resultados do ensaio de evaporação do provete IMC 7.2. 251 Quadro A2.54 Resultados do ensaio de evaporação do provete IMC 7.3. 253 255 Quadro A2.55 Resultados do ensaio de evaporação do provete IMC 8.1. Quadro A2.56 Resultados do ensaio de evaporação do provete IMC 8.2. 257 Quadro A2.57 Resultados do ensaio de evaporação do provete IMC 8.3. 259 Quadro A2.58 Resultados do ensaio de evaporação do provete IMC 9.1. 261 Quadro A2.59 Resultados do ensaio de evaporação do provete IMC 9.2. 263 Quadro A2.60 Resultados do ensaio de evaporação do provete IMC 9.3. 265

Quadro A2.61 Resultados do ensaio de absorção de água por capilaridade do provete IMC 267 1.1T, após tratamento.

	Página
Quadro A2.62 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.2T, após tratamento.	268
Quadro A2.63 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.3T, após tratamento.	269
Quadro A2.64 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.4T, após tratamento.	270
Quadro A2.65 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.1T, após tratamento.	271
Quadro A2.66 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.2T, após tratamento.	272
Quadro A2.67 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.3T, após tratamento.	273
Quadro A2.68 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.4T, após tratamento.	274
Quadro A2.69 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.1T, após tratamento.	275
Quadro A2.70 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.2T, após tratamento.	276
Quadro A2.71 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.1T, após tratamento.	277
Quadro A2.72 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.2T, após tratamento.	278
Quadro A2.73 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.3T, após tratamento.	279
Quadro A2.74 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.4T, após tratamento.	280
Quadro A2.75 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.1T, após tratamento.	281
Quadro A2.76 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.2T, após tratamento.	282
Quadro A2.77 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.3T, após tratamento.	283

Índices

	Página
Quadro A2.78 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.4T, após tratamento.	284
Quadro A2.79 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.1T, após tratamento.	285
Quadro A2.80 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.2T, após tratamento.	286
Quadro A2.81 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.3T, após tratamento.	287
Quadro A2.82 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.1T, após tratamento.	288
Quadro A2.83 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.2T, após tratamento.	289
Quadro A2.84 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.3T, após tratamento.	290
Quadro A2.85 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.1T, após tratamento.	291
Quadro A2.86 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.2T, após tratamento.	292
Quadro A2.87 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.3T, após tratamento.	293
Quadro A2.88 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.1T, após tratamento.	294
Quadro A2.89 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.2T, após tratamento.	295
Quadro A2.90 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.3T, após tratamento.	296
Quadro A2.91 Resultados do ensaio de evaporação do provete IMC 1.1T, após tratamento.	297
Quadro A2.92 Resultados do ensaio de evaporação do provete IMC 1.2T, após tratamento.	299
Quadro A2.93 Resultados do ensaio de evaporação do provete IMC 1.3T, após tratamento.	301
Quadro A2.94 Resultados do ensaio de evaporação do provete IMC 1.4T, após tratamento.	303
Quadro A2.95 Resultados do ensaio de evaporação do provete IMC 2.1T, após tratamento.	305

– – /	
1.1	ainn
	91110
	<u> </u>

Quadro A2.96 Res	ultados do e	nsaio	o de eva	pora	ação do prove	ete Il	MC 2.2T,	após t	tratame	ento.	307
Quadro A2.97 Res	ultados do e	nsaio	o de eva	pora	ação do prove	ete Il	MC 2.3T,	após t	tratame	ento.	309
Quadro A2.98 Res	ultados do e	nsaio	o de eva	pora	ação do prove	ete Il	MC 2.4T,	após t	tratame	ento.	311
Quadro A2.99 Res	ultados do e	nsaio	o de eva	pora	ação do prove	ete Il	MC 3.1T,	após t	tratame	ento.	313
Quadro A2.100 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	3.2T,	após	315
Quadro A2.101 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	4.1T,	após	317
Quadro A2.102 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	4.2T,	após	319
Quadro A2.103 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	4.3T,	após	321
Quadro A2.104 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	4.4T,	após	323
Quadro A2.105 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	5.1T,	após	325
Quadro A2.106 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	5.2T,	após	327
Quadro A2.107 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	5.3T,	após	329
Quadro A2.108 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	5.4T,	após	331
Quadro A2.109 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	6.1T,	após	333
Quadro A2.110 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	6.2T,	após	335
Quadro A2.111 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	6.3T,	após	337
Quadro A2.112 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	7.1T,	após	339
Quadro A2.113 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	7.2T,	após	341

Quadro A2.114 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	7.3T,	após	343
Quadro A2.115 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	8.1T,	após	345
Quadro A2.116 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	8.2T,	após	347
Quadro A2.117 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	8.3T,	após	349
Quadro A2.118 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	9.1T,	após	351
Quadro A2.119 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	9.2T,	após	353
Quadro A2.120 tratamento.	Resultados	do	ensaio	de	evaporação	do	provete	IMC	9.3T,	após	355
Quadro A2.121 Re 1.1E, após tratame	esultados do ento e ensaio	ensa de o	aio de al envelheo	osorg	ção de água _I nto.	por o	capilaridad	de do	provet	e IMC	357
Quadro A2.122 Re 1.2E, após tratame	esultados do ento e ensaio	ensa de o	aio de al envelheo	osor	ção de água _I nto.	por d	capilaridad	de do	provet	e IMC	358
Quadro A2.123 Re 1.3E, após tratame	esultados do ento e ensaio	ensa de (aio de al envelheo	osorg	ção de água _I nto.	por o	capilaridad	de do	provet	e IMC	359
Quadro A2.124 Re 1.4E, após tratame	esultados do ento e ensaio	ensa de o	aio de al envelheo	osore	ção de água _I nto.	por d	capilaridad	de do	provet	e IMC	360
Quadro A2.125 Re 2.1E, após tratame	esultados do ento e ensaio	ensa de o	aio de al envelheo	osorg	ção de água _I nto.	por o	capilaridad	de do	provet	e IMC	361
Quadro A2.126 Re 2.2E, após tratame	esultados do ento e ensaio	ensa de (aio de al envelheo	osorg	ção de água _l nto.	por o	capilaridad	de do	provet	e IMC	362
Quadro A2.127 Re 2.3E, após tratame	esultados do ento e ensaio	ensa de (aio de al envelheo	osorg	ção de água _l nto.	por o	capilaridad	de do	provet	e IMC	363
Quadro A2.128 Re 2.4E, após tratame	esultados do ento e ensaio	ensa de (aio de al envelheo	osorg	ção de água _l nto.	por o	capilaridad	de do	provet	e IMC	364
Quadro A2.129 Re 3.1E, após tratame	esultados do ento e ensaio	ensa de (aio de al envelheo	osorg	ção de água _l nto.	por o	capilaridad	de do	provet	e IMC	365

	Página
Quadro A2.130 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.	366
Quadro A2.131 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.	367
Quadro A2.132 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.	368
Quadro A2.133 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.	369
Quadro A2.134 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.	370
Quadro A2.135 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.	371
Quadro A2.136 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.	372
Quadro A2.137 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.	373
Quadro A2.138 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.	374
Quadro A2.139 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.	375
Quadro A2.140 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.	376
Quadro A2.141 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.	377
Quadro A2.142 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.	378
Quadro A2.143 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.	379
Quadro A2.144 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.	380
Quadro A2.145 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.	381

	Página
Quadro A2.146 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.	382
Quadro A2.147 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.	383
Quadro A2.148 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.	384
Quadro A2.149 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.	385
Quadro A2.150 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.	386
Quadro A2.151 Resultados do ensaio de evaporação do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.	387
Quadro A2.152 Resultados do ensaio de evaporação do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.	389
Quadro A2.153 Resultados do ensaio de evaporação do provete IMC 1.3E, após tratamento e ensaio de envelhecimento.	391
Quadro A2.154 Resultados do ensaio de evaporação do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.	393
Quadro A2.155 Resultados do ensaio de evaporação do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.	395
Quadro A2.156 Resultados do ensaio de evaporação do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.	397
Quadro A2.157 Resultados do ensaio de evaporação do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.	399
Quadro A2.158 Resultados do ensaio de evaporação do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.	401
Quadro A2.159 Resultados do ensaio de evaporação do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.	403
Quadro A2.160 Resultados do ensaio de evaporação do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.	405
Quadro A2.161 Resultados do ensaio de evaporação do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.	407

	Página
Quadro A2.162 Resultados do ensaio de evaporação do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.	409
Quadro A2.163 Resultados do ensaio de evaporação do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.	411
Quadro A2.164 Resultados do ensaio de evaporação do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.	413
Quadro A2.165 Resultados do ensaio de evaporação do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.	415
Quadro A2.166 Resultados do ensaio de evaporação do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.	417
Quadro A2.167 Resultados do ensaio de evaporação do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.	419
Quadro A2.168 Resultados do ensaio de evaporação do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.	421
Quadro A2.169 Resultados do ensaio de evaporação do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.	423
Quadro A2.170 Resultados do ensaio de evaporação do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.	425
Quadro A2.171 Resultados do ensaio de evaporação do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.	427
Quadro A2.172 Resultados do ensaio de evaporação do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.	429
Quadro A2.173 Resultados do ensaio de evaporação do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.	431
Quadro A2.174 Resultados do ensaio de evaporação do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.	433
Quadro A2.175 Resultados do ensaio de evaporação do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.	435
Quadro A2.176 Resultados do ensaio de evaporação do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.	437
Quadro A2.177 Resultados do ensaio de evaporação do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.	439

	Página
Quadro A2.178 Resultados do ensaio de evaporação do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.	441
Quadro A2.179 Resultados do ensaio de evaporação do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.	443
Quadro A2.180 Resultados do ensaio de evaporação do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.	445

ÍNDICE DE FIGURAS

	Página
CAPÍTULO 1 IGREJA DE NOSSA SENHORA DA ASSUNÇÃO, MATRIZ DE CAMINHA	3
Figura 1.1 Escavações arqueológicas realizadas no exterior da igreja em frente ao portal Oeste (Dezembro de 2002).	3
Figura 1.2 Escavações arqueológicas realizadas no interior da igreja junto à primeira coluna do lado direito (Julho 2004).	4
Figura 1.3 Escavações arqueológicas realizadas na capela do Bom Jesus dos Mareantes (Outubro de 2004).	4
Figura 1.4 Pormenor da folha 1 da Carta Geológica de Portugal à escala de 1:200000 (Serviços Geológicos de Portugal, 1992).	5
Figura 1.5 Igreja Matriz de Caminha (década de 70 do século XX).	7
Figura 1.6 Vista da platibanda rendilhada sobre a cabeceira da Igreja.	8
Figura 1.7 Igreja Matriz de Caminha – Vista Geral antes dos trabalhos realizados pela DGEMN na década de 30 do século XX, observando-se ainda as janelas abertas no século XVIII, em substituição das primitivas (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	9
Figura 1.8 Lado Norte da ábside antes (a) e após (b) a demolição do anexo. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	9
Figura 1.9 Demolição de um pequeno edifício acrescentado à capela do Bom Jesus dos Mareantes. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	10
Figura 1.10 Demolição de dois altares encaixados na fachada Sul. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	10
Figura 1.11 Imagem do interior da igreja (a) e aspecto do contraforte da fachada Sul (b), antes dos trabalhos executados pela DGEMN nos anos 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	11
Figura 1.12 Portal principal – Área que se encontrava soterrada. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).	12
Figura 1.13 Aspecto da Igreja Matriz de Caminha (Fevereiro de 2006).	16

	Página
Figura 1.14 Aspecto do portal Sul da Igreja Matriz de Caminha (Fevereiro de 2006).	16
Figura 1.15 Pormenor do portal Sul da Igreja Matriz de Caminha (Fevereiro de 2006).	17
CAPÍTULO 2 TRABALHO EXPERIMENTAL REALIZADO	19
Figura 2.1 Extracção dos tarolos 1, 2 e 3 da fachada Norte na parede entre as capelas da Árvore de Jessé e a do Bom Jesus dos Mareantes (Setembro 2004).	21
Figura 2.2 Extracção dos tarolos 6 e 7 do portal Oeste (a, b) e dos tarolos 8 e 9 do portal Sul (c, d) (Setembro de 2004).	22
Figura 2.3 Aspecto do portal Oeste antes e após o preenchimento dos vazios deixados pelos tarolos 6 e 7 a) Vazios deixados pelos tarolos 6 e 7, no portal Oeste; b) Vazios preenchidos com argamassa de cal e rolhas de microgranito (Setembro 2004).	23
Figura 2.4 Tarolos retirados da fachada Norte e dos portais Oeste e Sul da Igreja Matriz de Caminha, já prontos para serem cortados de forma a formarem os respectivos provetes (Outubro de 2004).	23
Figura 2.5 Equipamentos utilizados no ensaio de absorção de água por capilaridade e aspecto dos provetes durante o ensaio.	32
Figura 2.6 Ensaio de absorção de água por capilaridade - amostra com rede porosa unimodal.	33
Figura 2.7 Ensaio de absorção de água por capilaridade - amostra com rede porosa bimodal.	35
Figura 2.8 Ensaio de evaporação: a) Dispositivos utilizados na determinação do ensaio de evaporação; b) Aspecto dos provetes no início deste ensaio.	40
Figura 2.9 Curvas tipo da perda de peso por unidade de superfície, em função do tempo.	41
Figura 2.10 Aspecto dos provetes logo após a aplicação dos dois produtos consolidantes (2005/04/18): a) Após aplicação do consolidante Tegovakon V; b). Após a aplicação do consolidante HMK S 41.	42
Figura 2.11 Aspecto dos provetes 24 horas após a aplicação dos dois produtos consolidantes (2005/04/19): a) Após a aplicação do consolidante Tegovakon V; b) Após a aplicação do consolidante HMK S 41.	43
Figura 2.12 Aspecto dos provetes logo após a aplicação dos dois produtos hidrófugos (2005/04/18): a) Após a aplicação do hidrófugo Sikagard 700 S; b) Após a aplicação do hidrófugo HB Siliker S 101.	44

	Página
Figura 2.13 Aspecto dos provetes 24 horas após a aplicação dos dois produtos hidrófugos (2005/04/19): a) Após a aplicação do hidrófugo Sikagard 700 S; b) Após a aplicação do hidrófugo HB Siliker S 101.	45
Figura 2.14 Aspecto dos provetes antes e depois de estarem sujeitos a exposição ambiental.	46
Figura 2.15 Ciclos de aquecimento e de arrefecimento a que estiveram sujeitos os provetes na segunda parte dos ensaios de envelhecimento acelerado.	48
Figura 2.16 Correlação linear obtida entre d e N_{48} nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha.	55
Figura 2.17 Correlação linear obtida entre d e N_{48} nos provetes de granito de duas micas de grão médio e de microgranito empregues na Igreja Matriz de Caminha.	55
Figura 2.18 Correlação linear obtida entre d e N_{48} nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha.	58
Figura 2.19 Correlação linear obtida entre d e N_{48} nos provetes de granito de duas micas de grão médio e de microgranito empregues na Igreja Matriz de Caminha.	58
Figura 2.20 Distribuição dos diâmetros de acesso aos poros na patela IMC 2.1.1 e IMC 2.2.1 de granito de grão médio empregue na Igreja Matriz de Caminha.	64
Figura 2.21 Distribuição dos diâmetros de acesso aos poros na patela IMC 3.2.1 de granito de grão médio empregue na Igreja Matriz de Caminha.	64
Figura 2.22 Distribuição dos diâmetros de acesso aos poros na patela IMC 6.1.1 de microgranito empregue na Igreja Matriz de Caminha.	65
Figura 2.23 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.1 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.1.1) e depois (IMC 3.1.2) da aplicação do consolidante Tegovakon V.	71
Figura 2.24 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.2 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.2.1) e depois (IMC 3.2.2) da aplicação do consolidante HMK S 41.	72
Figura 2.25 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.1 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.1.1) e depois (IMC 6.1.2) da aplicação do consolidante Tegovakon V.	72
Figura 2.26 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.2 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.2.1) e depois (IMC 6.2.2) da aplicação do consolidante HMK S 41.	73

Figura 2.27 Distribuição dos diâmetros de acesso aos poro de grão médio empregue na Igreja Matriz de Caminha an 3.1.2) da aplicação do consolidante Tegovakon V e após o er	s da patela IMC 3.1 de granito tes (IMC 3.1.1) e depois (IMC nvelhecimento (IMC 3.1.3).	80
Figura 2.28 Distribuição dos diâmetros de acesso aos poro de grão médio empregue na Igreja Matriz de Caminha an 3.2.2) da aplicação do consolidante HMK S 41 e após o enve	s da patela IMC 3.2 de granito tes (IMC 3.2.1) e depois (IMC lhecimento (IMC 3.2.3).	80
Figura 2.29 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante Tegovakon V e após o envelheo	poros da patela IMC 6.1 de IMC 6.1.1) e depois (IMC 6.1.2) cimento (IMC 6.1.3).	81
Figura 2.30 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante HMK S 41 e após o envelhecimo	poros da patela IMC 6.2 de IMC 6.2.1) e depois (IMC 6.2.2) ento (IMC 6.2.3).	81
Figura 2.31 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante HMK S 41 e após o envelhecimo	poros da patela IMC 7.1 de IMC 7.1.1) e depois (IMC 7.1.2) ento (IMC 7.1.3).	82
Figura 2.32 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante HMK S 41 e após o envelhecimo	poros da patela IMC 7.2 de IMC 7.2.1) e depois (IMC 7.2.2) ento (IMC 7.2.3).	82
Figura 2.33 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante HMK S 41 e após o envelhecimo	poros da patela IMC 8.1 de IMC 8.1.1) e depois (IMC 8.1.2) ento (IMC 8.1.3).	83
Figura 2.34 Distribuição dos diâmetros de acesso aos microgranito empregue na Igreja Matriz de Caminha antes (da aplicação do consolidante HMK S 41 e após o envelhecimo	poros da patela IMC 9.3 de IMC 9.3.1) e depois (IMC 9.3.2) ento (IMC 9.3.3).	83
Figura 2.35 Correlação linear entre os valores de A e d granito de grão médio da Igreja Matriz de Caminha.	e N_{48} obtidos nos provetes de	86
Figura 2.36 Correlação linear entre os valores de A e d granito de grão médio e de microgranito da Igreja Matriz de	e N ₄₈ obtidos nos provetes de Caminha.	86
Figura 2.37 Diagrama do ensaio de absorção de água por de granito de grão médio.	capilaridade – provete IMC 2.1	88
Figura 2.38 Diagrama do ensaio de absorção de água por de microgranito.	capilaridade - provete IMC 9.3	89
Figura 2.39 Correlação polinomial entre os valores de B e granito de grão médio da Igreja Matriz de Caminha.	de N_{48} obtidos nos provetes de	90
Figura 2.40 Correlação polinomial entre os valores de B e granito de grão médio e de microgranito da Igreja Matriz de	de N ₄₈ obtidos nos provetes de Caminha.	91

	Página
Figura 2.41 Correlação polinomial entre os valores de B e de A obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.	91
Figura 2.42 Correlação polinomial entre os valores de B e de A obtidos nos provetes de granito de grão médio e de microgranito da Igreja Matriz de Caminha.	92
Figura 2.43 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.2T de granito de grão médio (tratado com o hidrófugo Sikagard).	97
Figura 2.44 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 1.3T de granito de grão médio (tratado com o hidrófugo Siliker).	97
Figura 2.45 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 7.2T de microgranito (tratado com o consolidante Tegovakon V).	98
Figura 2.46 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 9.2T de microgranito (tratado com o consolidante HMK S41).	98
Figura 2.47 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.3E de granito de grão médio (tratado com o produto hidrófugo Sikagard e após envelhecimento).	104
Figura 2.48 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.4E de granito de grão médio (tratado com o produto hidrófugo Siliker e após envelhecimento).	104
Figura 2.49 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 3.1E de microgranito (tratado com o consolidante Tegovakon V e após envelhecimento).	105
Figura 2.50 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 8.1E de microgranito (tratado com o consolidante HMK S 41 e após envelhecimento).	105
Figura 2.51 Diagrama do ensaio de evaporação – provete IMC 5.2 de granito de duas micas de grão médio (antes dos tratamentos).	109
Figura 2.52 Diagrama do ensaio de evaporação – provete IMC 8.3 de microgranito de duas micas (antes dos tratamentos).	109
Figura 2.53 Correlação linear entre os valores de N_{48} e t(S _c) obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.	111
Figura 2.54 Correlação linear entre os valores de N_{48} e t(S _c) obtidos nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha.	111
Figura 2.55 Correlação linear entre os valores de A e $t(S_c)$ obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.	112
Figura 2.56 Correlação polinomial entre os valores de A e $t(S_c)$ obtidos nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha.	113

	Página
Figura 2.57 Diagrama do ensaio de evaporação – provete IMC 2.1T de granito de duas micas de grão médio (tratado com o produto hidrófugo Sikagard).	115
Figura 2.58 Diagrama do ensaio de evaporação – provete IMC 2.2T de granito de duas micas de grão médio (tratado com o produto hidrófugo Siliker).	115
Figura 2.59 Diagrama do ensaio de evaporação – provete IMC 6.1E de microgranito de duas micas (tratado com o consolidante Tegovakon V).	116
Figura 2.60 Diagrama do ensaio de evaporação – provete IMC 7.1T de microgranito de duas micas (tratado com o consolidante HMK S 41).	116
Figura 2.61 Diagrama do ensaio de evaporação – provete IMC 1.1E de granito de duas micas de grão médio (tratado com o produto hidrófugo Sikagard e após envelhecimento).	125
Figura 2.62 Diagrama do ensaio de evaporação – provete IMC 5.1E de granito de duas micas de grão médio (tratado com o produto hidrófugo Siliker e após envelhecimento).	125
Figura 2.63 Diagrama do ensaio de evaporação – provete IMC 6.3E de microgranito de duas micas (tratado com o consolidante Tegovakon V e após envelhecimento).	126
Figura 2.64 Diagrama do ensaio de evaporação – provete IMC 2.4E de microgranito de duas micas (tratado com o consolidante HMK S 41 e após envelhecimento).	126
Figura 2.65 Relação entre os valores da profundidade de penetração por medição directa e por medição no gráfico de absorção de água por capilaridade.	135
Figura 2.66 Correlação polinomial entre $P_p \in N_{48}$ nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha, sujeitos a tratamento com o consolidante Tegovakon V.	137
Figura 2.67 Correlação obtida entre $P_p e N_{48}$ nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha, sujeitos a tratamento com o consolidante S 41.	137
Figura 2.68 Correlação polinomial obtida entre P _p e A nos provetes de microgranito de duas micas da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.	138
Figura 2.69 Correlação polinomial obtida entre P_p e A nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.	139
Figura 2.70 Correlação polinomial obtida entre P _p e A nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.	139

	Página
Figura 2.71 Correlação polinomial obtida entre P_p e B nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.	140
Figura 2.72 Correlação polinomial obtida entre Pp e B nos provetes de microgranito de duas micas da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.	140
Figura 2.73 Correlação polinomial obtida entre P_p e B nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.	141
ANEXO 2	175
Figura A2.1 Ensaio de absorção de água por capilaridade do provete IMC 1.1.	177
Figura A2.2 Ensaio de absorção de água por capilaridade do provete IMC 1.2.	178
Figura A2.3 Ensaio de absorção de água por capilaridade do provete IMC 1.3.	179
Figura A2.4 Ensaio de absorção de água por capilaridade do provete IMC 1.4.	180
Figura A2.5 Ensaio de absorção de água por capilaridade do provete IMC 2.1.	181
Figura A2.6 Ensaio de absorção de água por capilaridade do provete IMC 2.2.	182
Figura A2.7 Ensaio de absorção de água por capilaridade do provete IMC 2.3.	183
Figura A2.8 Ensaio de absorção de água por capilaridade do provete IMC 2.4.	184
Figura A2.9 Ensaio de absorção de água por capilaridade do provete IMC 3.1.	185
Figura A2.10 Ensaio de absorção de água por capilaridade do provete IMC 3.2.	186
Figura A2.11 Ensaio de absorção de água por capilaridade do provete IMC 4.1.	187
Figura A2.12 Ensaio de absorção de água por capilaridade do provete IMC 4.2.	188
Figura A2.13 Ensaio de absorção de água por capilaridade do provete IMC 4.3.	189
Figura A2.14 Ensaio de absorção de água por capilaridade do provete IMC 4.4.	190
Figura A2.15 Ensaio de absorção de água por capilaridade do provete IMC 5.1.	191
Figura A2.16 Ensaio de absorção de água por capilaridade do provete IMC 5.2.	192
Figura A2.17 Ensaio de absorção de água por capilaridade do provete IMC 5.3.	193
Figura A2.18 Ensaio de absorção de água por capilaridade do provete IMC 5.4.	194

Figura A2.19	Ensaio de absorção de água por capilaridade do provete IMC 6.1.	195
Figura A2.20	Ensaio de absorção de água por capilaridade do provete IMC 6.2.	196
Figura A2.21	Ensaio de absorção de água por capilaridade do provete IMC 6.3.	197
Figura A2.22	Ensaio de absorção de água por capilaridade do provete IMC 7.1.	198
Figura A2.23	Ensaio de absorção de água por capilaridade do provete IMC 7.2.	199
Figura A2.24	Ensaio de absorção de água por capilaridade do provete IMC 7.3.	200
Figura A2.25	Ensaio de absorção de água por capilaridade do provete IMC 8.1.	201
Figura A2.26	Ensaio de absorção de água por capilaridade do provete IMC 8.2.	202
Figura A2.27	Ensaio de absorção de água por capilaridade do provete IMC 8.3.	203
Figura A2.28	Ensaio de absorção de água por capilaridade do provete IMC 9.1.	204
Figura A2.29	Ensaio de absorção de água por capilaridade do provete IMC 9.2.	205
Figura A2.30	Ensaio de absorção de água por capilaridade do provete IMC 9.3.	206
Figura A2.31	Ensaio de evaporação do provete IMC 1.1.	208
Figura A2.32	Ensaio de evaporação do provete IMC 1.2.	210
Figura A2.33	Ensaio de evaporação do provete IMC 1.3.	212
Figura A2.34	Ensaio de evaporação do provete IMC 1.4.	214
Figura A2.35	Eensaio de evaporação do provete IMC 2.1.	216
Figura A2.36	Ensaio de evaporação do provete IMC 2.2.	218
Figura A2.37	Ensaio de evaporação do provete IMC 2.3.	220
Figura A2.38	Ensaio de evaporação do provete IMC 2.4.	222
Figura A2.39	Ensaio de evaporação do provete IMC 3.1.	224
Figura A2.40	Ensaio de evaporação do provete IMC 3.2.	226
Figura A2.41	Ensaio de evaporação do provete IMC 4.1.	228
Figura A2.42	Ensaio de evaporação do provete IMC 4.2.	230
Figura A2.43	Ensaio de evaporação do provete IMC 4.3.	232

Figura A2.44	Ensaio de evaporação do provete IMC 4.4.	234
Figura A2.45	Ensaio de evaporação do provete IMC 5.1.	236
Figura A2.46	Ensaio de evaporação do provete IMC 5.2.	238
Figura A2.47	Ensaio de evaporação do provete IMC 5.3.	240
Figura A2.48	Ensaio de evaporação do provete IMC 5.4.	242
Figura A2.49	Ensaio de evaporação do provete IMC 6.1.	244
Figura A2.50	Ensaio de evaporação do provete IMC 6.2.	246
Figura A2.51	Ensaio de evaporação do provete IMC 6.3.	248
Figura A2.52	Ensaio de evaporação do provete IMC 7.1.	250
Figura A2.53	Ensaio de evaporação do provete IMC 7.2.	252
Figura A2.54	Ensaio de evaporação do provete IMC 7.3.	254
Figura A2.55	Ensaio de evaporação do provete IMC 8.1.	256
Figura A2.56	Ensaio de evaporação do provete IMC 8.2.	258
Figura A2.57	Ensaio de evaporação do provete IMC 8.3.	260
Figura A2.58	Ensaio de evaporação do provete IMC 9.1.	262
Figura A2.59	Ensaio de evaporação do provete IMC 9.2.	264
Figura A2.60	Ensaio de evaporação do provete IMC 9.3.	266
Figura A2.61 tratamento.	Ensaio de absorção de água por capilaridade do provete IMC 1.1T, após	267
Figura A2.62 tratamento.	Ensaio de absorção de água por capilaridade do provete IMC 1.2T, após	268
Figura A2.63 tratamento.	Ensaio de absorção de água por capilaridade do provete IMC 1.3T, após	269
Figura A2.64 tratamento.	Ensaio de absorção de água por capilaridade do provete IMC 1.4T, após	270
Figura A2.65 tratamento.	Ensaio de absorção de água por capilaridade do provete IMC 2.1T, após	271

Índices

Figura A2.66 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	2.2T,	após	272
Figura A2.67 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	2.3T,	após	273
Figura A2.68 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	2.4T,	após	274
Figura A2.69 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	3.1T,	após	275
Figura A2.70 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	3.2T,	após	276
Figura A2.71 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	4.1T,	após	277
Figura A2.72 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	4.2T,	após	278
Figura A2.73 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	4.3T,	após	279
Figura A2.74 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	4.4T,	após	280
Figura A2.75 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	5.1T,	após	281
Figura A2.76 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	5.2T,	após	282
Figura A2.77 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	5.3T,	após	283
Figura A2.78 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	5.4T,	após	284
Figura A2.79 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	6.1T,	após	285
Figura A2.80 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	6.2T,	após	286
Figura A2.81 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	6.3T,	após	287

													Página
Figura A2.82 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	7.1T,	após	288
Figura A2.83 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	7.2T,	após	289
Figura A2.84 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	7.3T,	após	290
Figura A2.85 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	8.1T,	após	291
Figura A2.86 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	8.2T,	após	292
Figura A2.87 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	8.3T,	após	293
Figura A2.88 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	9.1T,	após	294
Figura A2.89 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	9.2T,	após	295
Figura A2.90 tratamento.	Ensaio	de	absorção	de	água	por	capilaridade	do	provete	IMC	9.3T,	após	296
Figura A2.91	Ensaio de	e ev	/aporação	do	provet	te IN	IC 1.1T, após	tra	tamento.				298
Figura A2.92	Ensaio de	e ev	/aporação	do	provet	te IN	IC 1.2T, após	tra	tamento.				300
Figura A2.93	Ensaio de	e ev	/aporação	do	provet	te IN	IC 1.3T, após	tra	tamento.				302
Figura A2.94	Ensaio de	e ev	/aporação	do	provet	te IN	IC 1.4T, após	tra	tamento.				304
Figura A2.95	Ensaio de	e ev	/aporação	do	provet	te IN	IC 2.1T, após	tra	tamento.				306
Figura A2.96	Ensaio de	e ev	/aporação	do	provet	te IN	IC 2.2T, após	tra	tamento.				308
Figura A2.97	Ensaio de	e ev	/aporação	do	provet	te IN	IC 2.3T, após	tra	tamento.				310
Figura A2.98	Ensaio de	e ev	/aporação	do	provet	te IN	IC 2.4T, após	tra	tamento.				312
Figura A2.99	Ensaio de	e ev	/aporação	do	provet	te IN	IC 3.1T, após	tra	tamento.				314
Figura A2.100	Ensaio d	de e	evaporação	o do	prove	ete I	MC 3.2T, apó	s tr	atamento).			316
Figura A2.101	Ensaio d	de e	evaporaçã	o do	o prove	ete I	MC 4.1T, apó	s tr	atamento) .			318

Figura A2.102 E	nsaio de evaporação do provete IMC 4.2T,	após tratamento.	320
Figura A2.103 E	nsaio de evaporação do provete IMC 4.3T,	após tratamento.	322
Figura A2.104 E	nsaio de evaporação do provete IMC 4.4T,	após tratamento.	324
Figura A2.105 E	nsaio de evaporação do provete IMC 5.1T,	após tratamento.	326
Figura A2.106 E	nsaio de evaporação do provete IMC 5.2T,	após tratamento.	328
Figura A2.107 E	nsaio de evaporação do provete IMC 5.3T,	após tratamento.	330
Figura A2.108 E	nsaio de evaporação do provete IMC 5.4T,	após tratamento.	332
Figura A2.109 E	nsaio de evaporação do provete IMC 6.1T,	após tratamento.	334
Figura A2.110 E	nsaio de evaporação do provete IMC 6.2T,	após tratamento.	336
Figura A2.111 E	nsaio de evaporação do provete IMC 6.3T,	após tratamento.	338
Figura A2.112 E	nsaio de evaporação do provete IMC 7.1T,	após tratamento.	340
Figura A2.113 E	nsaio de evaporação do provete IMC 7.2T,	após tratamento.	342
Figura A2.114 E	nsaio de evaporação do provete IMC 7.3T,	após tratamento.	344
Figura A2.115 E	nsaio de evaporação do provete IMC 8.1T,	após tratamento.	346
Figura A2.116 E	nsaio de evaporação do provete IMC 8.2T,	após tratamento.	348
Figura A2.117 E	nsaio de evaporação do provete IMC 8.3T,	após tratamento.	350
Figura A2.118 E	nsaio de evaporação do provete IMC 9.1T,	após tratamento.	352
Figura A2.119 E	nsaio de evaporação do provete IMC 9.2T,	após tratamento.	354
Figura A2.120 E	nsaio de evaporação do provete IMC 9.3T,	após tratamento.	356
Figura A2.121 I tratamento e ens	Ensaio de absorção de água por capilarid saio de envelhecimento.	ade do provete IMC 1.1E, após	357
Figura A2.122 I tratamento e ens	Ensaio de absorção de água por capilarid saio de envelhecimento.	ade do provete IMC 1.2E, após	358
Figura A2.123 I tratamento e ens	Ensaio de absorção de água por capilarid saio de envelhecimento.	ade do provete IMC 1.3E, após	359
Figura A2.124 I tratamento e ens	Ensaio de absorção de água por capilarid saio de envelhecimento.	ade do provete IMC 1.4E, após	360

Pá	igina
Figura A2.125 Ensaio de absorção de água por capilaridade do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.	361
Figura A2.126 Ensaio de absorção de água por capilaridade do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.	362
Figura A2.127 Ensaio de absorção de água por capilaridade do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.	363
Figura A2.128 Ensaio de absorção de água por capilaridade do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.	364
Figura A2.129 Ensaio de absorção de água por capilaridade do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.	365
Figura A2.130 Ensaio de absorção de água por capilaridade do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.	366
Figura A2.131 Ensaio de absorção de água por capilaridade do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.	367
Figura A2.132 Ensaio de absorção de água por capilaridade do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.	368
Figura A2.133 Ensaio de absorção de água por capilaridade do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.	369
Figura A2.134 Ensaio de absorção de água por capilaridade do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.	370
Figura A2.135 Ensaio de absorção de água por capilaridade do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.	371
Figura A2.136 Ensaio de absorção de água por capilaridade do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.	372
Figura A2.137 Ensaio de absorção de água por capilaridade do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.	373
Figura A2.138 Ensaio de absorção de água por capilaridade do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.	374
Figura A2.139 Ensaio de absorção de água por capilaridade do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.	375
Figura A2.140 Ensaio de absorção de água por capilaridade do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.	376

Índices

	Página
Figura A2.141 Ensaio de absorção de água por capilaridade do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.	377
Figura A2.142 Ensaio de absorção de água por capilaridade do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.	378
Figura A2.143 Ensaio de absorção de água por capilaridade do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.	379
Figura A2.144 Ensaio de absorção de água por capilaridade do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.	380
Figura A2.145 Ensaio de absorção de água por capilaridade do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.	381
Figura A2.146 Ensaio de absorção de água por capilaridade do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.	382
Figura A2.147 Ensaio de absorção de água por capilaridade do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.	383
Figura A2.148 Ensaio de absorção de água por capilaridade do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.	384
Figura A2.149 Ensaio de absorção de água por capilaridade do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.	385
Figura A2.150 Ensaio de absorção de água por capilaridade do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.	386
Figura A2.151 Ensaio de evaporação do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.	388
Figura A2.152 Ensaio de evaporação do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.	390
Figura A2.153 Ensaio de evaporação do provete IMC 1.3E, após tratamento e ensaio de envelhecimento.	392
Figura A2.154 Ensaio de evaporação do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.	394
Figura A2.155 Ensaio de evaporação do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.	396
Figura A2.156 Ensaio de evaporação do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.	398
Índices

											F	Página
Figura A2.157 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	2.3E,	após	tratamento	e ensaio	de	400
Figura A2.158 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	2.4E,	após	tratamento	e ensaio	de	402
Figura A2.159 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	3.1E,	após	tratamento	e ensaio	de	404
Figura A2.160 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	3.2E,	após	tratamento	e ensaio	de	406
Figura A2.161 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	4.1E,	após	tratamento	e ensaio	de	408
Figura A2.162 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	4.2E,	após	tratamento	e ensaio	de	410
Figura A2.163 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	4.3E,	após	tratamento	e ensaio	de	412
Figura A2.164 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	4.4E,	após	tratamento	e ensaio	de	414
Figura A2.165 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	5.1E,	após	tratamento	e ensaio	de	416
Figura A2.166 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	5.2E,	após	tratamento	e ensaio	de	418
Figura A2.167 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	5.3E,	após	tratamento	e ensaio	de	420
Figura A2.168 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	5.4E,	após	tratamento	e ensaio	de	422
Figura A2.169 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	6.1E,	após	tratamento	e ensaio	de	424
Figura A2.170 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	6.2E,	após	tratamento	e ensaio	de	426
Figura A2.171 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	6.3E,	após	tratamento	e ensaio	de	428
Figura A2.172 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	7.1E,	após	tratamento	e ensaio	de	430

Página

Figura A2.173 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	7.2E,	após	tratamento	е	ensaio	de	432
Figura A2.174 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	7.3E,	após	tratamento	е	ensaio	de	434
Figura A2.175 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	8.1E,	após	tratamento	е	ensaio	de	436
Figura A2.176 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	8.2E,	após	tratamento	е	ensaio	de	438
Figura A2.177 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	8.3E,	após	tratamento	е	ensaio	de	440
Figura A2.178 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	9.1E,	após	tratamento	е	ensaio	de	442
Figura A2.179 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	9.2E,	após	tratamento	е	ensaio	de	444
Figura A2.180 envelhecimento	Ensaio	de	evaporação	do	provete	IMC	9.3E,	após	tratamento	е	ensaio	de	446

ÍNDICE DE SÍMBOLOS

- A Aumento de peso por unidade de superfície e unidade da raiz quadrada do tempo, relacionado com o preenchimento da porosidade livre (ensaio de absorção de água por capilaridade) (g× cm⁻²×h^{-1/2});
- A' Aumento de peso por unidade de superfície e unidade da raiz quadrada do tempo, relacionado com o preenchimento lento da macroporosidade retida (ensaio de absorção de água por capilaridade) - (g×cm⁻²×h^{-1/2});
- A_E Aumento de peso por unidade de superfície e unidade da raiz quadrada do tempo, relacionado com o preenchimento da porosidade livre (ensaio de absorção de água por capilaridade), após a aplicação dos produtos de tratamento e ensaios de envelhecimento (g×cm⁻²×h^{-1/2});
- A_T Aumento de peso por unidade de superfície e unidade da raiz quadrada do tempo, relacionado com o preenchimento da porosidade livre (ensaio de absorção de água por capilaridade), após a aplicação dos produtos de tratamento (g×cm⁻²×h^{-1/2});
- B Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade) (cm×h^{-1/2});
- B_E Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade), após a aplicação dos produtos de tratamento e ensaios de envelhecimento - (cm×h^{-1/2});
- B_T Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade), após a aplicação dos produtos de tratamento -(cm×h^{-1/2});
- B₁ Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade) correspondente ao segundo troço (cm×h^{-1/2});
- B_{1E} Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade) correspondente ao segundo troço, após a aplicação dos produtos de tratamento e ensaios de envelhecimento - (cm×h^{-1/2});
- B_{1T} Valor da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo (ensaio de absorção de água por capilaridade) correspondente ao segundo troço, após a aplicação dos produtos de tratamento - (cm×h^{-1/2});
- C Concentração de um gás ou de uma solução (g×mol⁻¹);
- d Densidade aparente em amostras secas;
- d_a Diâmetro de acesso das principais famílias de poros (μm);
- d_{aE} Diâmetro de acesso das principais famílias de poros, após a aplicação dos produtos de tratamento e ensaios de envelhecimento (μm);

- d_{aT} Diâmetro de acesso das principais famílias de poros, após a aplicação dos produtos de tratamento (μm);
- D Coeficiente de difusão $(cm^2 \times h^{-1});$
- g Aceleração da gravidade (9,81 m×s⁻²);
- h Distância que separa o nível da água da massa de ar com determinada humidade relativa (m);
- h_c Altura máxima da ascensão capilar (m);
- HR Humidade relativa do ar (%);
- I Comprimento de um tubo capilar cilíndrico (ensaio de evaporação) (m);
- L Altura da franja capilar (ensaio de absorção de água por capilaridade) (m);
- m Massa (g);
- N Número de amostras;
- N_{CAP req} Número de capilares com raio equivalente r_{eq};
- N_{Hg}- Porosidade total invadida pelo mercúrio líquido no ensaio com o porosímetro de mercúrio (%);
- N_{HgE} Porosidade total invadida pelo mercúrio líquido no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento e ensaios de envelhecimento - (%);
- N_{HgT} Porosidade total invadida pelo mercúrio líquido no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento - (%);
- N_{HgR} Porosidade retida calculada a partir do ensaio com o porosímetro de mercúrio (%);
- N_M Macroporosidade correspondente aos poros com raios de acesso superiores a 7,5 μm, obtida no ensaio com o porosímetro de mercúrio (%);
- N_{ME} Macroporosidade correspondente aos poros com raios de acesso superiores a 7,5 μm, obtida no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento e ensaios de envelhecimento - (%);
- N_{MT} Macroporosidade correspondente aos poros com raios de acesso superiores a 7,5 μm, obtida no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento - (%);
- N₄₈ Porosidade livre às quarenta e oito horas obtida em ensaio de embebição com água à pressão normal - (%);
- N_{48E} Porosidade livre às quarenta e oito horas obtida em ensaio de embebição com água à pressão normal, após a aplicação dos produtos de tratamento e ensaios de envelhecimento - (%);
- N_{48T} Porosidade livre às quarenta e oito horas obtida em ensaio de embebição com água à pressão normal, após a aplicação dos produtos de tratamento - (%);
- N_µ Microporosidade correspondente aos poros com raios de acesso inferiores a 7,5 μm, obtida no ensaio com o porosímetro de mercúrio - (%);
- N_{μE} Microporosidade correspondente aos poros com raios de acesso inferiores a 7,5 μm, obtida no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento e ensaios de envelhecimento (%);

- $N_{\mu T}$ Microporosidade correspondente aos poros com raios de acesso inferiores a 7,5 µm, obtida no ensaio com o porosímetro de mercúrio, após a aplicação dos produtos de tratamento (%);
- p_s Pressão parcial do vapor de água na massa de ar saturada (Pa);
- pw Pressão parcial do vapor de água acima do nível da água (Pa);
- p₁ Pressão do vapor de água (Pa);
- P Pressão (pressão de uma massa de ar; pressão aplicada ao mercúrio líquido no ensaio com o porosímetro de mercúrio) (Pa);
- P_c Pressão capilar (Pa);
- P_{Hg} Pressão do fluido não molhante (mercúrio líquido) no ensaio com o porosímetro de mercúrio -(Pa);
- P_p Profundidade de penetração dos produtos consolidantes (cm);
- P_{pm} Profundidade de penetração média dos produtos consolidantes (cm);
- Pr Pressão de referência (1,013×10⁵ Pa);
- P_{vap} Pressão do fluido molhante (vapor de mercúrio) no ensaio com o porosímetro de mercúrio (Pa);
- q Fluxo de evaporação (g×cm⁻²×h⁻¹);
- q_E Fluxo de evaporação, após a aplicação dos produtos de tratamento e ensaios de envelhecimento
 (g×cm⁻²×h⁻¹);
- q_T Fluxo de evaporação, após a aplicação dos produtos de tratamento (g×cm⁻²×h⁻¹);
- q_{exp} Fluxo de evaporação, determinado experimentalmente, de uma superfície de água livre, sujeita às mesmas condições de evaporação da água contida no tubo (g×cm⁻²×h⁻¹);
- Q Caudal instantâneo (m³×s⁻¹);
- R Constante dos gases perfeitos $(0,0820 \text{ I} \times \text{atmxmol}^{-1} \text{x}^{\circ} \text{K}^{-1})$
- r Coeficiente de correlação;
- r_c Raio de um capilar (m);
- r_{eq} Raio equivalente, calculado a partir dos resultados do ensaio de absorção de água por capilaridade - (μm);
- r_m Raio de curvatura do menisco (m);
- s Saturação hídrica em relação à porosidade livre acessível à água (ensaio de evaporação) (%);
- S Área / Superfície (m²);
- S_c Saturação crítica (ensaio de evaporação) (%);
- S_{cE} Saturação crítica (ensaio de evaporação), após a aplicação dos produtos de tratamento e ensaios de envelhecimento (%);
- S_{cT} Saturação crítica (ensaio de evaporação), após a aplicação dos produtos de tratamento (%);
- t Intervalo de tempo (s);
- t(S_c) Intervalo de tempo necessário para atingir a saturação crítica Sc (ensaio de evaporação) (h);

- t(S_{cE}) Intervalo de tempo necessário para atingir a saturação crítica Sc (ensaio de evaporação), após
 - a aplicação dos produtos de tratamento e ensaios de envelhecimento (h);
- t(S_{cT}) Intervalo de tempo necessário para atingir a saturação crítica Sc (ensaio de evaporação), após a aplicação dos produtos de tratamento - (h);
- t₀ Instante inicial (s);
- t₁ Instante em que se dá a ruptura do declive da curva de absorção de água por capilaridade e a franja capilar atinge o topo do provete - (s);
- t₂ Instante em que é preenchida a segunda família de poros e que coincide com a absorção correspondente à embebição da porosidade livre às quarenta e oito horas - (s);
- T Temperatura absoluta (°K);
- Tr Temperatura absoluta de referência (273,15 °K);
- V Volume (cm³)
- W Peso de um provete no instante t (ensaio de absorção de água por capilaridade) (g);
- W₀ Peso de um provete seco (g);
- x Comprimento (m);
- x₀ Distância entre a superfície da água e o orifício de um tubo capilar cilíndrico no instante inicial t₀ (m);
- W₄₈ Peso de um provete após 48 horas de embebição em água (g);
- α Parâmetro de evaporação ($\alpha = 1 / \varepsilon_a$) (m⁻¹);
- ΔA_E Variação percentual média dos valores do aumento de peso por unidade de superfície e unidade de raiz quadrada do tempo, antes e após a realização dos ensaios de envelhecimento – (%);
- ΔA_T Variação percentual média dos valores do aumento de peso por unidade de superfície e unidade de raiz quadrada do tempo, antes e após a aplicação dos produtos de tratamento - (%);
- ΔB_E Variação percentual média dos valores da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo, antes e após a realização dos ensaios de envelhecimento - (%);
- ΔB_T Variação percentual média dos valores da progressão da ascenção da franja capilar por unidade da raiz quadrada do tempo, antes e após a aplicação dos produtos de tratamento (%);
- ΔN_{48E} Variação percentual dos valores da porosidade livre às quarenta e oito horas obtida em ensaio de embebição com água à pressão normal, antes e após a realização dos ensaios de envelhecimento - (%);
- ΔN_{48T} Variação percentual dos valores da porosidade livre às quarenta e oito horas obtida em ensaio de embebição com água à pressão normal, antes e após a aplicação dos produtos de tratamento - (%);
- ΔN_{HgE} Variação percentual média dos valores da porosidade total ao mercúrio, antes e após a realização dos ensaios de envelhecimento - (%);
- ΔN_{HgT} Variação percentual média dos valores da porosidade total ao mercúrio, antes e após a aplicação dos produtos de tratamento (%);

- Δ(Nµ/N_{Hg})_E Variação percentual média dos valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio, antes e após a realização dos ensaios de envelhecimento (%);
- Δ(Nµ/N_{Hg})_T Variação percentual média dos valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio, antes e após a aplicação dos produtos de tratamento - (%);
- ΔP Gradiente de pressão (Pa);
- Δq_E Variação percentual média dos valores do fluxo de evaporação, antes e após a realização dos ensaios de envelhecimento (%);
- Δq_T Variação percentual média dos valores do fluxo de evaporação, antes e após a aplicação dos produtos de tratamento (%);
- ΔS_{cE} Variação percentual média dos valores da saturação crítica, antes e após a realização dos ensaios de envelhecimento (%);
- ΔS_{cT} Variação percentual média dos valores da saturação crítica, antes e após a aplicação dos produtos de tratamento (%);
- Δt(S_{cE}) Variação percentual média dos valores do tempo em que a saturação crítica é atingida, antes e após a realização dos ensaios de envelhecimento - (%);
- Δt(S_{cT}) Variação percentual média dos valores do tempo em que a saturação crítica é atingida, antes
 e após a aplicação dos produtos de tratamento (%);
- ϵ_{a} Parâmetro de evaporação (m);
- η Viscosidade dinâmica de um fluido (Pa×s⁻¹ $\eta_{\dot{a}\sigma}$ ua=1,002×10⁻³ Pa×s⁻¹; η_{azoto} =1,76×10⁻⁵ Pa×s⁻¹);
- κ Factor de evaporação (g×Pa⁻¹×cm⁻¹×h⁻¹);
- θ Ângulo (°);
- ρ Massa volúmica (Kg×m⁻³ $ρ_{água}$ =10³ Kg×m⁻³; $ρ_{azoto}$ = 1,293 kg×m⁻³; $ρ_{ar}$ = 1,200 kg×m⁻³);
- ψ Tensão superficial de um líquido (N×m⁻¹) ($\psi(agua-ar)=0,072 \text{ N}\times\text{m}^{-1} \text{ a } 20 \text{ °C}; \psi(\text{Hg líquido-Hg } vapor)=0,486 \text{ N}\times\text{m}^{-1} \text{ a } 25 \text{ °C});$

INTRODUÇÃO GERAL

O objectivo deste trabalho prende-se com a avaliação da eficácia da aplicação de produtos consolidantes e hidrófugos em pedras graníticas da Igreja de Nossa Senhora da Assunção, Matriz de Caminha. Procura-se estudar os efeitos imediatos resultantes da aplicação dos produtos de tratamento, bem como a sua acção com o tempo mediante a realização de ensaios de envelhecimento acelerado.

O monumento foi construído essencialmente por dois tipos de rochas graníticas: um granito de duas micas de grão médio usado nos paramentos e um microgranito de duas micas empregue principalmente nas pedras mais trabalhadas, nomeadamente nos portais Oeste e Sul e no interior do edifício.

As pedras de granito de duas micas de grão médio e de microgranito de duas micas da igreja em estudo apresentam diferentes graus de meteorização herdados da pedreira, e deteriorações resultantes de factores como as condições de forte precipitação da região, elevada humidade relativa do ar e a cristalização de sais solúveis no interior da rede porosa que originam uma crescente degradação do material pétreo existente.

A Igreja Matriz de Caminha foi submetida, entre 2002 e 2004, a trabalhos de manutenção e conservação da responsabilidade do IPPAR, através de uma metodologia de tratamentos indicada por Begonha (2004a) e descrita pormenorizadamente por Ferreira (2004). Um ano após a intervenção, verificou-se o reaparecimento de colonização de algas na fachada Norte. Por outro lado, devido ao valor histórico e artístico dos portais Oeste e Sul, o IPPAR optou pela interrupção dos trabalhos nos mesmos, decidindo-se pelo estudo da acção e eficácia de produtos consolidantes antes da sua aplicação no granito dos referidos portais.

O estudo tem ainda como propósito encontrar o produto de tratamento hidrófugo adequado ao tratamento do granito de duas micas de grão médio presente na fachada Norte da Igreja Matriz de Caminha e o produto consolidante a aplicar no microgranito de duas micas existente nos portais Oeste e Sul deste monumento.

No Capítulo 1, apresentam-se o enquadramento geológico e uma breve história e descrição da Igreja de Nossa Senhora da Assunção, Matriz de Caminha. Referem-se ainda as intervenções efectuadas no monumento a partir do século XVI até à década de 30 do século XX. Apresentam-se as deteriorações

1

Introdução Geral

que afectam esta igreja e os factores ambientais que as provocam. Refere-se o seu actual estado de conservação e as intervenções que estão a decorrer desde o ano de 2002.

No Capítulo 2, estuda-se o meio poroso das pedras graníticas da Igreja Matriz de Caminha em amostras sem e com a aplicação de produtos de tratamento e também após a realização de ensaios de envelhecimento acelerado. Deste modo, este capítulo refere, em primeiro lugar, a localização, cota e data de extracção dos tarolos retirados da Igreja Matriz de Caminha, designação dos provetes a que deram origem e suas características geométricas. Posteriormente, descreve-se o modo de realização dos diferentes ensaios efectuados, necessários para caracterizar petrofisicamente os dois tipos de granito existentes, designadamente a determinação da densidade aparente, da porosidade livre às quarenta e oito horas, da porometria com o porosímetro de mercúrio, da absorção de água por capilaridade, da evaporação e da profundidade de penetração. Os tipos de tratamento utilizados, seu modo de aplicação e descrição do ensaio de envelhecimento acelerado também são, do mesmo modo, aspectos referidos neste capítulo. Por último, apresentam-se os resultados obtidos dos ensaios de produtos de tratamento e após a aplicação dos produtos de tratamento e a realização de ensaios de envelhecimento. Na parte final do Capítulo 2, apresentam-se as análises dos resultados obtidos com a realização dos ensaios atrás referidos.

Nas Conclusões deste estudo, indicam-se as principais vantagens e inconvenientes que advêm da aplicação dos quatro produtos de tratamento empregues nos provetes graníticos da Igreja Matriz de Caminha, referindo-se o produto hidrófugo e o produto consolidante mais indicados no tratamento das pedras.

No Anexo 1, apresentam-se as fichas técnicas dos produtos hidrófugos Sikagard 700 S e HB Siliker S 101, e dos consolidantes Tegovakon V e HMK S 41, fornecidas pelos fabricantes ou pelas firmas que os comercializam em Portugal.

No Anexo 2, apresentam-se os resultados integrais obtidos nos ensaios de absorção de água por capilaridade e de evaporação antes e após os tratamentos e depois dos ensaios de envelhecimento, bem como os respectivos gráficos.

2

CAPÍTULO 1 IGREJA DE NOSSA SENHORA DA ASSUNÇÃO, MATRIZ DE CAMINHA

1.1 Enquadramento geológico

Caminha situa-se no estuário do Rio Minho junto à foz do Rio Coura a cerca de 2 km do Oceano Atlântico.

Segundo a folha 1 da Carta Geológica de Portugal à escala 1:200000 (Serviços Geológicos de Portugal, 1992), a Igreja Matriz de Caminha, encontra-se fundada em depósitos fluviais e estuarinos, não actuais, que acompanham o canal dos rios, associados a depósitos actuais.

Efectivamente, Begonha (2004a) confirmou que o monumento assenta sobre solos arenosos através da observação de escavações arqueológicas efectuadas tanto no exterior da igreja em frente ao Portal Oeste como no interior desta. Segundo o mesmo autor, nas escavações situadas em frente ao Portal Oeste (Figura 1.1) e junto à primeira coluna do lado direito já dentro da igreja (Figura 1.2), os solos arenosos são constituídos por areias limpas de cor beige clara. Verificou também que o nível freático se encontrava a pequena profundidade, observando-se a sua subida e descida de acordo com as marés.

Figura 1.1 Escavações arqueológicas realizadas no exterior da igreja em frente ao portal Oeste (Dezembro de 2002).

Figura 1.2 Escavações arqueológicas realizadas no interior da igreja junto à primeira coluna do lado direito (Julho 2004).

Nas escavações efectuadas no interior da igreja, as areias não se encontravam limpas, exibindo um tom castanho acinzentado. Em qualquer das escavações encontraram-se numerosos esqueletos de seres humanos aí sepultados (Figura 1.3).

Figura 1.3 Escavações arqueológicas realizadas na capela do Bom Jesus dos Mareantes (Outubro de 2004).

Segundo Begonha (2004a), a uma pequena distância da vila, encontram-se vários tipos de granitos, nomeadamente o granito de Lanhelas, Gondarém e Covas (granitos alóctones, sin-tectónicos relativamente a D₃, de grão médio de duas micas, designando-se como γ'_3); o granito de Vila Praia de Âncora (granito alóctone, sin-tectónico relativamente a D3, de grão médio, de duas micas do antiforma de Viana do Castelo – Esposende, também designado por γ'_3 na folha 1 da mesma carta geológica) e o granito da Serra de Arga (granito alóctone, sin a tardi-tectónico relativamente a D3, de grão grosseiro, de duas micas, com raros megacristais, designando-se por γ'_4) (Figura 1.4).

Figura 1.4 Pormenor da folha 1 da Carta Geológica de Portugal à escala de 1:200000 (Serviços Geológicos de Portugal, 1992).

A implantação dos maciços graníticos durante o período Carbónico metamorfizou as formações anteriores Landoverianas e Venloquianas do Silúrico, designadas por UMc na folha 1 da Carta Geológica de Portugal à escala 1:200000 (Figura 1.4) (Serviços Geológicos de Portugal, 1992). Esta

unidade parautóctone apresenta uma sequência litoestratigráfica que parece equivaler ao flanco normal de uma macrodobra deitada de D₁ Hercínica, redobrada em D₃. Na base, a unidade inicia-se por um nível de xistos amplitosos a que se sobrepõem xistos negros andaluzíticos, contendo, na parte superior, níveis finos de liditos. Sucede-se uma sequência monótona de xistos cinzentos, às vezes ligeiramente gresosos, onde também é visível uma alternância de leitos centimétricos de filitos e metassilitos, nodulosos devido à presença de andalusite. Em certos locais, a sequência inclui quartzitos claros, skarnitos e, novamente xistos negros com níveis finos de liditos. Superiormente, encontram-se grés negros e uma alternância centimétrica espessa e monótona de filitos e metagrés que variam em tonalidade desde negros a avermelhados e incluem aspectos nodulares com predominância, ora gresosas, ora filíticas. Na parte mais elevada da sequência, voltam a ocorrer xistos negros, grés negros e ampelitos.

Ainda segundo a folha 1 da Carta Geológica de Portugal à escala 1:200000 (Serviços Geológicos de Portugal, 1992), a Sul de Caminha, ocorrem afloramentos metamorfizados mais antigos do Câmbrico (formação de Desejosa – designada por De) e do Ordovícico (formação de Valongo – designado por Va).

1.2 Breve história e descrição da Igreja de Nossa Senhora da Assunção, Matriz de Caminha

De acordo com o Inventário do Património Arquitectónico (Direcção Geral dos Edifícios e Monumentos Nacionais, 2001), a Igreja Matriz de Caminha, foi construída nos séculos XV e XVI, sob a direcção do arquitecto biscainho Tomé de Tolosa. A primeira pedra foi lançada a 10 de Março de 1428 e a celebração da primeira missa no dia 4 de Abril de 1488, estando ainda a igreja inacabada. No século XVI, D. Manuel I ofereceu uma grande ajuda para a sua construção. Assim, em 1511 foi edificada a capela do Bom Jesus dos Mareantes e, em 1556, impulsionada por D. André de Noronha, concluída a torre sineira por Domingos Ruas e Diogo Enes.

Segundo o mesmo inventário, esta Igreja apresenta uma transição entre o estilo gótico tardio e o renascentista (Figura 1.5), enquadrando-se na tipologia das igrejas de estilo Manuelino de três naves, com cobertura de madeira, de dois andares na nave central e cabeceira abobadada. A decoração dos portais e dos pilares e a substituição dos arcos quebrados pelos de volta perfeita anunciam já o renascimento, revelando influência plateresca do Norte de Espanha.

Figura 1.5 Igreja Matriz de Caminha (década de 70 do século XX).

A igreja é composta de três naves, cabeceira tripla, com capela-mor poligonal e dois absidíolos quadrangulares. Estas naves são compostas por cinco tramos divididas por arcos plenos sobre pilastras circulares, de bases e capitéis oitavados. A torre sineira é recuada relativamente ao frontispício, sendo este orientado para poente e constituído por três corpos escalonados, divididos por contrafortes rematados por pináculos. O seu corpo central possui um portal de arco pleno sobre pésdireitos enquadrados por alfiz sobre pilastra, ambos ricamente decorados com arabescos, urnas, grutescos e bestiário sob o friso. Encima-o uma rosácea igualmente decorada com arabescos. As fachadas laterais Norte e Sul são percorridas por uma cornija e friso com arabescos. A fachada Sul incorpora um portal de arco pleno, organizado em retábulo. É notória a diferença entre o portal principal Oeste e o lateral Sul, visto o primeiro ser relativamente simples, sem profundidade e o segundo ser tão trabalhado como se fosse um portal principal. Pensa-se que tal justificação deve-se ao pequeno espaçamento inicial entre o frontspício e a muralha, enquanto que o portal lateral Sul estava voltado para a vila. A cabeceira da igreja e a capela do Bom Jesus dos Mareantes são coroadas por platibanda rendilhada (Figura 1.6), coruchéus sobre os contrafortes e gárgulas zoomórficas. Esta capela é de planta quadrada, com arco pleno e pilares laterais esculpidos. A capela-mor tem cobertura polinervada sobre mísulas e bocetes dourados.

Figura 1.6 Vista da platibanda rendilhada sobre a cabeceira da Igreja.

1.3 Intervenções no Monumento

No Boletim número 6 da revista Monumentos da Direcção Geral dos Edifícios e Monumentos Nacionais (DGEMN) (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936) são descritos alguns danos e intervenções realizadas nos séculos XVI, XVII e XVIII na Igreja Matriz de Caminha. Durante a regência da rainha D. Catarina, viúva de D. João III, e devido à ocorrência de fortes vendavais na costa, a parte superior da igreja, foi várias vezes reparada. Em Janeiro de 1636, um grande furação, que assolou toda a costa Noroeste da Península, causou grandes estragos no monumento, nomeadamente o despedeçamento em vários lanços da platibanda rendilhada, as ameias da torre, as cruzes terminais das empenas e quase todas as pirâmides que rematavam os botaréus. Algumas das esculturas que faziam parte do portal Sul tombaram por terra. Posteriormente, na Guerra da Restauração, a Igreja foi alvo de bombardeamento Espanhol. No século XVIII, as duas janelas da fachada principal foram substituídas por quatro, rectangulares e de dimensões diferentes (Figura 1.7).

Na década de 30 do século XX, a Direcção Geral dos Edifícios e Monumentos Nacionais procedeu a diversas intervenções de reabilitação e restauro, procurando reconstituir o imóvel, então arruinado, de forma a preencher as lacunas e libertar a igreja de todos os elementos considerados não conformes com o seu estilo original.

Figura 1.7 Igreja Matriz de Caminha – Vista Geral antes dos trabalhos realizados pela DGEMN na década de 30 do século XX, observando-se ainda as janelas abertas no século XVIII, em substituição das primitivas (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

Assim, segundo o Boletim nº 6 da revista Monumentos (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936) e atendendo somente às obras relacionadas com a pedra, demoliram-se os edifícios que mascaravam exteriormente a ábside (Figura 1.8), repararam-se os paramentos de cantaria mutilados pela ligação das paredes, entaipando-se as portas que haviam sido abertas para estabelecer a comunicação entre esses edifícios e a capela-mor. Procedeu-se também à demolição de uma capela e seu anexo existente na fachada Norte, reconstruindo-se a parede primitiva com os modilhões e cornija, destruídos para dar lugar ao arco da capela.

Figura 1.8 Lado Norte da ábside antes (a) e após (b) a demolição do anexo. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

Demoliu-se um pequeno edifício acrescentado à capela do Bom Jesus dos Mareantes (Figura 1.9), reconstruindo-se com silhares de cantaria a parede testeira da capela que havia desaparecido.

Figura 1.9 Demolição de um pequeno edifício acrescentado à capela do Bom Jesus dos Mareantes. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

Os dois altares encaixados na parede da nave Sul (Figura 1.10) foram também demolidos, reconstruindo-se a mesma parede em cantaria.

Figura 1.10 Demolição de dois altares encaixados na fachada Sul. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

Executou-se o derribamento do pórtico que tinha sido improvisado no segundo tramo da arcada do lado Norte, por debaixo do orgão e, do grande coro que ocupava toda a parte inferior da igreja (Figura 1.11a), compreendendo o contraforte exteriormente construído para aguentar o impulso dos respectivos arcos de cantaria (Figura 1.11b), operação feita com especial cuidado e completada por importantes obras de reparação nas cantarias dos pilares e paredes que o encaixe do travejamento havia mutilado.

Figura 1.11 Imagem do interior da igreja (a) e aspecto do contraforte da fachada Sul (b), antes dos trabalhos executados pela DGEMN nos anos 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

Executou-se o rebaixamento geral do adro (Figura 1.12), lajeando-se no nível primitivo, demoliram-se e removeram-se três cruzeiros e várias grades que ali se tinham colocado, reconstruindo-se uma escada em cantaria junto ao portal Sul. Após o rebaixamento do adro, reconstruiu-se o soco exterior de cantaria na torre, sacristia e outros lugares. Posteriormente, rebaixou-se e executou-se novo lajeamento do chão interior da igreja e na capela do Bom Jesus dos Mareantes. Realizou-se a restauração completa das janelas da ábside e do corpo da igreja, inclusive as duas da fachada principal, que no século XVIII haviam sido substituídas por quatro, rectangulares e de diferentes dimensões. Desentaiparam-se e reconstruiram-se duas janelas na capela do Bom Jesus dos Mareantes, procedendo-se na mesma capela à consolidação e reforço da abóbada. Demoliu-se e reconstruiu-se novamente grande parte da parede Sul na nave central que se achava desaprumada. Reconstruiu-se o envasamento dos pilares das naves e mudaram-se e modificaram-se os degraus de cantaria. Realizou-se a limpeza geral das abóbadas da capela-mor e dos absidíolos, bem como a

reparação e limpeza de todos os paramentos de cantaria interiores e exteriores, incluindo a raspagem e tomada de juntas.

Figura 1.12 Portal principal – Área que se encontrava soterrada. Trabalhos realizados pela DGEMN na década de 30 do século XX. (Direcção Geral dos Edifícios e Monumentos Nacionais, 1936).

2.4 Estado de Conservação

Segundo Begonha (2004a), as pedras do granito de duas micas de grão médio e do microgranito de duas micas, utilizadas na construção da Igreja de Nossa Senhora da Assunção, Matriz de Caminha, têm, em muitos casos, elevados graus de meteorização, com variação de pedra para pedra e, consequentemente diferentes graus de susceptibilidade às deteriorações.

O processo de meteorização conduziu, nos diversos tipos de granito, à formação de uma rede porosa do tipo fissural muito bem interligada, que possibilita não só a rápida e eficaz transferência de soluções salinas por capilaridade a partir da chuva ou do solo, mas também fortes fluxos de evaporação dessas soluções. Características idênticas são referidas em diversos trabalhos realizados em monumentos graníticos do Norte de Portugal continental (Begonha et al., 1994, Alves, 1997, Begonha, 2000, 2001, 2002ab, 2002b, 2002c, 2003a, 2003b, 2004b, Ferreira, 2004, Moutinho, 2005).

De acordo com Begonha (2004a), o tipo de deterioração que mais danos origina nas pedras da Igreja Matriz de Caminha é a desagregação granular, sendo esta a principal responsável pela perda de definição dos pormenores escultóricos do granito, sobretudo nos Portais Oeste e Sul. A maior parte dos danos da pedra têm assim origem na cristalização de minerais de sais solúveis no interior da rede porosa dos diversos tipos de granitos meteorizados. Amoroso e Fassina (1983) e Arnold e Zehnder (1987, 1988, 1989) referem que qualquer sal solúvel é um potencial agente de degradação dos meios porosos, nomeadamente as pedras.

Segundo Begonha (2004a), a penetração, transferência capilar e evaporação das soluções salinas provenientes do solo e das águas da chuva, bem como as variações do teor de humidade do ar, existentes em Caminha devido à proximidade do Oceano Atlântico e do Rio Minho, e por conseguinte a pequena profundidade do nível freático, conduzem a ciclos alternados de cristalização e dissolução/deliquescência total ou parcial dos minerais de maior solubilidade e/ou higroscopicidade. Em cada ciclo, durante a fase de cristalização dos minerais de sais solúveis no interior da rede porosa do granito, desenvolvem-se forças de cristalização que acabam por provocar ou o desengaste dos grãos ou a formação de planos de debilidade e descontinuidade que originam, respectivamente a desagregação granular e a formação de plaquetas e de placas. Os minerais de sais solúveis não reagem portanto quimicamente com os minerais constituintes do granito. A sua acção é mecânica. Os ciclos alternados de cristalização e dissolução/deliquescência dos minerais de sais solúveis devem ser a causa das figuras de dissolução e/ou dos "véus" muito finos da maior parte dos cristais de minerais de sais solúveis, incluindo minerais com menor solubilidade como a calcite e o gesso.

O mesmo autor não confirma a teoria de Arnold (1984) e Arnold e Zehnder (1987, 1988, 1989) no que diz respeito ao zonamento em altura dos minerais de sais solúveis nas zonas afectadas pela ascensão de soluções salinas a partir do solo no exterior da igreja. Explica que este facto resulta provavelmente da acção conjunta da transferência capilar de águas ricas em sais solúveis, quer a partir do solo quer da chuva. Assim observa-se a presença de halite nas cotas mais altas e mais baixas. A presença de calcite nas cotas mais elevadas, nomeadamente nas pedras da torre sineira, muito intensamente afectadas por desagregação granular, pode advir da reacção/lexiviação das argamassas (de cimento Portland ou mesmo de cal) por parte das águas da chuva ou, eventualmente, da própria composição das mesmas águas.

Begonha (2004a) verificou ainda que as pedras de fecho do arco do Portal Oeste apresentam forte desagregação granular devido a fortes teores de halite. A origem da halite não deverá resultar do fenómeno da ascensão capilar, mas de um processo de concentração a partir não só da acção directa da água da chuva, mas também da água da chuva que atinge as pedras de fecho após transferência por capilaridade a partir da cornija que está acima das mesmas.

As soluções salinas que ascendem por capilaridade a partir do solo são ainda responsáveis pela desagregação granular e formação de plaquetas e de eflorescências no interior da igreja. Na zona de

13

maior grau de deterioração, observa-se uma maior concentração de halite e de nitratite a cotas superiores (1,20 m a 2,20 m) e uma maior concentração de gesso e de calcite a cotas mais baixas (0,35 m a 1,20 m). No interior do monumento, parece verificar-se o zonamento sequencial em altura dos minerais de sais solúveis nas zonas afectadas pela ascensão de soluções salinas a partir do solo, como proposto por Arnold (1984) e Arnold e Zehnder (1987, 1988, 1989).

Verifica-se que as pedras muito expostas à precipitação (orientadas para Sudoeste ou Sul) exibem frequentemente desagregação granular de forte intensidade.

A origem dos minerais de sais solúveis na Igreja de Nossa Senhora da Assunção é diversa. A maior parte da halite e do gesso, presente nas áreas submetidas à ascensão capilar a partir do solo, deverá advir das águas salobras do estuário do Minho. A halite poderá também advir das águas das chuvas infiltradas no solo.

A cotas mais elevadas, tanto a halite como o gesso podem ter origem na água da chuva ou nos aerossóis de água do mar, transportados pelos nevoeiros e ventos fortes, frequentes na região. A halite cristaliza no interior da rede porosa do material pétreo e mesmo sobre o material biológico.

A presença de nitratos (nitratite e niter) ou calcite nas zonas sujeitas à ascensão capilar poderá ter origem nas sepulturas existentes quer no interior da igreja quer no exterior junto à mesma.

A calcite encontrada nas fachadas do monumento a cotas elevadas pode resultar da reacção/lexiviação das argamassas das juntas ou da composição da própria água das chuvas.

Begonha (2004a) refere ainda que as condições de forte precipitação, de elevada humidade relativa do ar e a ausência de níveis significativos de poluição atmosférica em Caminha favorecem o desenvolvimento de seres vivos nas pedras, particularmente de diversos tipos de líquenes, que em muitos locais recobrem a totalidade ou grande parte da superfície do material pétreo. Esta colonização liquénica é extremamente importante na Igreja Matriz, provocando a desagregação e fissuração da pedra, prejudicando esteticamente o monumento e dificultando a leitura de muitos pormenores escultóricos e ornamentais.

O grande desenvolvimento de algas na escadaria interior da torre sineira e a cotas elevadas nas paredes interiores da igreja são consequência, respectivamente, da ascensão capilar a partir do solo e de infiltrações a partir das coberturas.

14

A inexistência de elevados níveis de poluição atmosférica em Caminha traduz-se na ausência de crostas negras ou de filmes negros com composição idêntica aos estudados por Nord e Tronner (1991, 1992) e Nord e Ericsson (1993) na Suécia e Polónia e por Begonha e Sequeira Braga (1994, 1996a, 1996b) e Begonha (2001) no Porto. Além disso, o número de cinzas volantes observadas nas amostras estudadas por MEV é diminuto.

Posteriormente ao trabalho de Begonha (2004a) de diagnóstico do estado de conservação e de tratamento da pedra da Igreja Matriz de Caminha, decorrem trabalhos de limpeza e conservação no monumento desde o início do ano de 2002 e sob a direcção do Instituto Português do Património Arquitectónico.

Ferreira (2004) descreve a metodologia aplicada na intervenção realizada sobre os materiais pétreos da Igreja Matriz de Caminha nos anos de 2002 a 2004, incluindo as seguintes fases:

- Fase 1 aplicação de biocidas para eliminação das manifestações de colonização biológica, principalmente de líquenes, nos paramentos;
 - aplicação de herbicidas para eliminação de ervas e pequenos arbustos;
 - limpeza com remoção das sujidades existentes nos vários locais de intervenção;
 - remoção das argamassas de cimento em desagregação (as que apresentavam forte coesão não foram removidas por se entender que os danos seriam superiores aos benefícios);
- Fase 2 consolidação do suporte granítico com o objectivo de tentar travar a deterioração da pedra, nos locais onde se verificava a queda de material;
- Fase 3 fixação com colagem, onde necessário, de elementos em destacamento ou já destacados;
- Fase 4 tratamento das juntas com argamassa à base de cal nos locais onde haviam sido removidas as argamassas em desagregação;
- Fase 5 tratamento ou remoção dos elementos metálicos em ferro de ligação entre os vários elementos de cantaria, como por exemplo coruchéus;
- Fase 6 tratamento das fissuras existentes à superfície das pedras com recurso a micro-estucagem;
- Fase 7 reintegrações com argamassa nas zonas em falta.

As Figuras 1.13 e 1.14 mostram, respectivamente, o aspecto actual da fachada principal da Igreja Matriz de Caminha e do portal Sul, após a intervenção realizada entre 2002 e 2004.

Figura 1.13 Aspecto da Igreja Matriz de Caminha (Fevereiro de 2006).

A Figura 1.15 exibe um pormenor do portal Sul, sendo visível o sistema de pregos anti-pombos implementado em 2005.

Figura 1.14 Aspecto do portal Sul da Igreja Matriz de Caminha (Fevereiro de 2006).

Figura 1.15 Pormenor do portal Sul da Igreja Matriz de Caminha (Fevereiro de 2006).

CAPÍTULO 2 TRABALHO EXPERIMENTAL REALIZADO

2.1 Introdução

As diversas patologias da pedra existentes em monumentos dependem essencialmente das características do meio poroso das rochas. Estas características condicionam a velocidade, quantidade e distância percorrida pelas soluções salinas por transferência capilar no interior das pedras, definindo assim, os locais de evaporação das soluções e, consequentemente, a cristalização dos sais solúveis presentes nas soluções salinas.

O meio poroso é caracterizado através da sua geometria, dimensão dos poros e grau de interligação da rede porosa, que possibilitam que as transferências capilares assegurem um fluxo excedentário relativamente à evaporação, permitindo assim a cristalização de sais à superfície das pedras; ou, pelo contrário, que as transferências capilares condicionem um fluxo deficitário, conduzindo à cristalização de sais no interior das pedras (Rossi-Manaresi e Tucci, 1991; Freitas, 1992; Jeannette e Hammecker, 1992, 1993; Hammecker, 1993, Fitzner et al., 1996a, Begonha, 2001).

Os primeiros estudos das características do meio poroso incidiram sobre calcários e arenitos, entre os quais os realizados por Castro (1974, 1981), Castro et al. (1990a), Rodriguez-Rey et al. (1990), Mertz (1991), Atzeni et al. (1991), Hammecker et al. (1992), Meng (1992, 1993), Hammecker (1993), Hammecker et al. (1993), Ordóñez et al. (1995) e Fitzner et al. (1996a) e sobre mármores (Accardo et al., 1978; Castro, 1988, entre outros).

À excepção do trabalho precursor de Castro (1979a), só recentemente foram estudadas as características do meio poroso dos granitos por Castro et al. (1988, 1990b, 1991a, 1991b), Kobranova (1989), Casal Porto (1989), Alves et al. (1993), Vicente et al. (1993), Pinto (1993), Delgado Rodrigues (1993a, 1993b), Jeannette e Hammecker (1993), Begonha et al. (1994), Alves e Sequeira Braga (1994, 1995), Pinto et al. (1994), Pérez-Ortiz et al. (1994), Fort et al. (1995), Sousa (1996), Alves et al. (1996), Vicente (1996), Sequeira Braga et al. (1996), Delgado Rodrigues et al. (1996), Rosa (1996), Alves (1997), Begonha (2000, 2001, 2002, 2003a, 2003b, 2004b), Ferreira (2004), Moutinho (2005) e Begonha e Fojo (2006).

No presente capítulo, é estudado o meio poroso das pedras graníticas da Igreja Matriz de Caminha em amostras sem e com aplicação de produtos de tratamento e também após a realização de ensaios de envelhecimento acelerado. Com esse propósito, determinaram-se a densidade aparente, a porosidade

19

livre às quarenta e oito horas, a porometria, a absorção de água por capilaridade, a evaporação e a profundidade de penetração.

2.2 Amostragem

Foram utilizados trinta provetes, obtidos a partir de nove tarolos. Estes tarolos, com cerca de 4,4 cm de diâmetro foram retirados perpendicularmente à superfície das pedras e com a ajuda de uma máquina Hilti DD-160 E do Laboratório de Ensaio de Materiais de Construção (LEMC) da Faculdade de Engenharia da Universidade do Porto, equipada com coroas diamantadas. Dos nove tarolos retirados, obtiveram-se cinco na fachada Norte, dois no portal Oeste e dois no portal Sul da Igreja Matriz de Caminha. Relativamente aos tarolos retirados da fachada Norte, três deles foram extraídos de duas pedras de granito de duas micas de grão médio na parede entre as capelas da Árvore de Jessé e do Bom Jesus dos Mareantes (tarolos 1, 2 e 3 – Figura 2.1) e os restantes dois de uma pedra com o mesmo tipo de granito, na parede Norte da capela do Bom Jesus dos Mareantes (tarolos 4 e 5). Os tarolos 6 e 7 (Figuras 2.2a, 2.2b) foram obtidos de uma pedra de microgranito de duas micas do portal Oeste e os tarolos 8 e 9 (Figuras 2.2c, 2.2d) de uma outra pedra, do mesmo tipo da anterior no portal Sul. Nos dois portais, escolheram-se pedras com lacunas nos cantos, que futuramente virão a ser tapadas. Todos os espaços vazios resultantes da extracção dos tarolos foram preenchidos com argamassa de cal e arrematados exteriormente com pequenas rolhas do mesmo tipo de granito da respectiva pedra (Figura 2.3).

A partir dos nove tarolos, obtiveram-se trinta provetes com cerca de seis centímetros de altura e dez patelas cilíndricas com altura compreendida entre um e dois centímetros. Cada tarolo foi dividido em dois, três ou quatro provetes. O provete retirado da parte mais superficial de cada tarolo tem a terminação 1, aumentando esta terminação conforme o provete se vai afastando da superfície (Figura 2.4). O Quadro 2.1 apresenta a localização, cota, data de extracção dos nove tarolos e a correspondente designação, altura e diâmetro dos provetes cilíndricos associados.

Figura 2.1 Extracção dos tarolos 1, 2 e 3 da fachada Norte na parede entre as capelas da Árvore de Jessé e a do Bom Jesus dos Mareantes (Setembro 2004).

Figura 2.2 Extracção dos tarolos 6 e 7 do portal Oeste (a, b) e dos tarolos 8 e 9 do portal Sul (c, d) (Setembro de 2004).

Figura 2.3 Aspecto do portal Oeste antes e após o preenchimento dos vazios deixados pelos tarolos 6 e 7 a) Vazios deixados pelos tarolos 6 e 7, no portal Oeste; b) Vazios preenchidos com argamassa de cal e rolhas de microgranito (Setembro 2004).

Figura 2.4 Tarolos retirados da fachada Norte e dos portais Oeste e Sul da Igreja Matriz de Caminha, já prontos para serem cortados de forma a formarem os respectivos provetes (Outubro de 2004).

Tarolo	Localização	Cota (m)	Data	Designação dos provetes	Tipo de granito	Altura (cm)	Diâmetro (cm)
				IMC 1.1		5,97	4,44
1		0,96	27/09/2004	IMC 1.2		6,03	4,44
	Fachada Norte			IMC 1.3		5,99	4,44
				IMC 1.4		5,50	4,44
				IMC 2.1		5,99	4,44
2 Fachada Norte	Eacha da Nacia	0.07	27/20/2023	IMC 2.2		6,00	4,44
	0,87	27/09/2004	IMC 2.3		6,00	4,44	
				IMC 2.4		5,95	4,44
_		0.55	27/09/2004	IMC 3.1	Granito de duas micas	5,97	4,44
3	Fachada Norte	0,55		IMC 3.2	de grão médio	6,03	4,44
4 Fach		1,50	27/09/2004	IMC 4.1		5,97	4,44
	Fachada Norte			IMC 4.2		5,97	4,44
				IMC 4.3		6,01	4,44
				IMC 4.4		6,02	4,44
5	Fachada Norte	1,36	27/09/2004	IMC 5.1		6,00	4,44
				IMC 5.2		5,98	4,44
				IMC 5.3		6,01	4,44
				IMC 5.4		5,98	4,44
				IMC 6.1		6,02	4,44
6	Portal Oeste	0,91	27/09/2004	IMC 6.2		5,99	4,44
				IMC 6.3	Microgranito	6,10	4,44
7	Portal Oeste		27/09/2004	IMC 7.1		5,99	4,44
		0,98		IMC 7.2		6,01	4,44
				IMC 7.3		5,98	4,44
8	Portal Sul	1,46	06/10/2004	IMC 8.1	de duas micas	5,99	4,40
				IMC 8.2		6,02	4,40
				IMC 8.3		6,00	4,40
				IMC 9.1		6,00	4,40
9	Portal Sul	1,46	06/10/2004	IMC 9.2		5,98	4,40
				IMC 9.3		6,05	4,40

Quadro 2.1 Indicação para cada tarolo, da sua localização, cota e data de extracção e designação dos provetes a que deram origem, tipo de granito e suas respectivas características geométricas.

As dez patelas foram cortadas radialmente em três partes iguais. O Quadro 2.2 apresenta a proveniência de cada uma das patelas e a designação atribuída a cada terça parte de cada patela. Nos terços das patelas com designação terminada em 1, não se aplicou qualquer tratamento, sendo que os com terminação em 2 foram tratados com um dos dois produtos consolidantes e os com terminação em 3 foram tratados e posteriormente submetidos a ensaios de envelhecimento acelerado.

Tarolo	Designação da Patela	Designação de cada terça parte de patela correspondente						
2	IMC 2.1	IMC 2.1.1						
2	IMC 2.2	IMC 2.2.1						
		IMC 3.1.1						
	IMC 3.1	IMC 3.1.2						
2		IMC 3.1.3						
5		IMC 3.2.1						
	IMC 3.2	IMC 3.2.2						
		IMC 3.2.3						
		IMC 6.1.1						
	IMC 6.1	IMC 6.1.2						
6		IMC 6.1.3						
0		IMC 6.2.1						
	IMC 6.2	IMC 6.2.2						
		IMC 6.2.3						
7		IMC 7.1.1						
	IMC 7.1	IMC 7.1.2						
		IMC 7.1.3						
/		IMC 7.2.1						
	IMC 7.2	IMC 7.2.2						
		IMC 7.2.3						
		IMC 8.1.1						
8	IMC 8.1	IMC 8.1.2						
		IMC 8.1.3						
		IMC 9.3.1						
9	IMC 9.3	IMC 9.3.2						
		IMC 9.3.3						

Quadro 2.2 Indicação da proveniência de cada patela, designação atribuída e designação de cada terça parte de patela obtida.

2.3 Técnicas experimentais

Com o objectivo de caracterizar petrofisicamente os dois tipos de granitos, realizaram-se ensaios de determinação da densidade aparente, da porosidade livre às quarenta e oito horas, da porometria com o porosímetro de mercúrio, de absorção de água por capilaridade e de evaporação. Os ensaios com o porosímetro de mercúrio executaram-se nas vinte e seis partes das dez patelas referidas no Quadro 2.2, antes e após a aplicação dos dois tipos de consolidantes e após os ensaios de

envelhecimento. Nos trinta provetes cilíndricos, determinaram-se a densidade aparente, a porosidade livre às quarenta e oito horas, a absorção de água por capilaridade e a evaporação antes e após a aplicação dos dois consolidantes ou dos dois hidrófugos e após os ensaios de envelhecimento.

2.3.1 Determinação da densidade aparente

Determinou-se a densidade aparente nos trinta provetes antes da aplicação dos produtos de tratamento. Os provetes foram secos em estufa a uma temperatura de 60° C até peso constante (W₀), determinando-se posteriormente a sua altura e diâmetro com auxílio de uma craveira. Seguidamente, com estes dados calculou-se o seu volume (V). A densidade aparente (d) foi calculada pela equação 2.1:

$$d = W_0 / V \tag{2.1}$$

2.3.2 Determinação da porosidade livre às quarenta e oito horas

A porosidade livre às quarenta e oito horas (N_{48}) foi determinada no LEMC por embebição em água sob condições atmosféricas normais de pressão e temperatura (22°C). Após a secagem em estufa até peso constante (W_0), os provetes foram introduzidos durante uma hora numa altura de água destilada igual a um quarto da sua altura. Após uma hora de ensaio, acrescentou-se água destilada até uma altura igual a metade da altura dos provetes. Os provetes foram assim mantidos durante mais 23 horas. Decorridas as primeiras 24 horas do ensaio, acrescentou-se novamente água destilada até se atingir uma cota aproximada de 2 cm acima do topo dos provetes. Ao fim de 48 horas de ensaio, os provetes foram pesados, tendo-se obtido o peso W_{48} . A porosidade livre é dada pela equação 2.2, em que V é o volume do provete determinado conforme descrito anteriormente.

$$N_{48} = (W_{48} - W_0) \times 100 / V$$
(2.2)

2.3.3 Ensaio de determinação da porometria com porosímetro de mercúrio

O estudo da porometria resulta da utilização de várias técnicas, cada uma com o seu devido campo de aplicação, derivado da grande gama de dimensão e geometria dos poros e das suas interligações (Castro, 1974, 1977, 1979a, 1979b, 1988; Meng, 1992, 1993).

Castro (1974, 1977, 1979a, 1979b, 1988) propõe a utilização de três métodos de sucção: o método da placa de sucção para poros com diâmetro compreendidos entre os 2,97 e 2973 μ m; o método da membrana de pressão para poros entre os 0,19 e 2,97 μ m; o método do exsicador de vazio para poros com diâmetros situados entre os 0,0003 e 0,09 μ m. O método do porosímetro de mercúrio e os métodos de sucção permitem obter resultados equivalentes no seu domínio de aplicação, podendo ser empregues indiferenciadamente (Castro, 1979a).

Meng (1992, 1993) refere um método designado por distribuição integral do fraccionamento dos poros, resultante da união de quatro pontos 1, 2, 3 e 4. O ponto 1 corresponde à dimensão de 0,001 μ m na curva de adsorção de uma solução a 35% de humidade relativa, sendo um ponto fixo. O ponto 2 é obtido pelo porosímetro de mercúrio, correspondendo à dimensão de 0,01 μ m, constituindo também um ponto fixo. O ponto 3 corresponde à intersecção das curvas de porometria obtidas pelo porosímetro de mercúrio e por análise de imagem, não sendo assim um ponto fixo. O ponto 4 é o valor mais alto, obtido por análise de imagem.

No presente trabalho, utilizou-se um porosímetro de mercúrio com o objectivo de determinar a porometria das dez patelas previamente cortadas radialmente em três partes. No primeiro terço de cada uma das patelas, não foi aplicado qualquer produto consolidante. No segundo terço, mas em oito patelas, determinou-se a porometria sem que a mesma tenha sido sujeita a ensaios de envelhecimento. No terceiro terço das mesmas oito patelas, determinou-se a porometria após os ensaios de envelhecimento. No total obtiveram-se vinte e seis resultados.

Na determinação da porometria com o porosímetro de mercúrio, utilizou-se o equipamento Poresizer 9320 da Micromeritics do Laboratório de Caracterização e Certificação de Materiais Granulares do Instituto Pedro Nunes (IPNlabgran) da Universidade de Coimbra, que opera numa gama de pressões compreendida entre 0,5 psia e 30000 psia (1 psia = 6897,411 Pa), permitindo a intrusão de mercúrio em poros de diâmetro compreendido entre 360 μ m, para a pressão mínima, e 60 Å, para a pressão máxima.

Segundo Begonha (2001), a técnica do porosímetro de mercúrio tem como princípio a lei das pressões capilares que determina os ângulos de contacto entre três fases não miscíveis: sólido, líquido e gás. Quando a pressão capilar P_c, se encontra em equilíbrio, pode ser expressa de acordo com a lei de Laplace:

$$P_{c} = 2 \psi \cos \theta / r_{c}$$
(2.3)

em que ψ significa a tensão superficial do líquido, θ é o ângulo de contacto entre as três fases e r_C é o raio do capilar. Nesta técnica, estas medições realizam-se em amostras previamente desgaseificadas a cerca de 2,6 Pa. Os únicos fluidos em presença são o mercúrio líquido (fluido não molhante) e o seu vapor (fluido molhante), que possuem um ângulo de contacto de 140°. Como no caso do mercúrio, a pressão capilar, dada pela expressão anterior é negativa, é necessário aplicar uma tensão para que o líquido não molhante penetre nos capilares finos. A pressão capilar define-se como a diferença de pressões entre os fluidos molhante (P_{vap}) e o não molhante (P_{Hg}), exprimindo-se, no caso do mercúrio, pela equação 2.4:

$$P_{C} = P_{Hg} - P_{vap}$$
(2.4)

Quando se injecta o mercúrio líquido, a pressão externa aplicada P_{Hg} é controlada mas, no entanto, a pressão do fluído molhante P_{vap} não pode ultrapassar a pressão de saturação, que é aproximadamente igual a 0,26 Pa a 25°C, valor negligenciável relativamente a P_{Hg} . Considerando que os valores de P_c e de P_{Hg} são sensivelmente iguais e, atendendo a que a tensão superficial do mercúrio a 25 °C é igual a 0,486 N/m, chega-se, a partir da equação 2.3, a uma expressão mais simples 2.5 que relaciona a pressão aplicada de mercúrio líquido (P), expressa em bares, com o raio dos capilares r_c , expresso em micra.

$$P = 7.5 / r_c$$
 (2.5)

Para cada pressão aplicada, mede-se o volume de mercúrio introduzido na amostra. Estes valores são muito importantes pois, de acordo com o referido por Dullien (1979), Mertz (1991) e Begonha (2001), a quantidade de mercúrio líquido injectado depende, para cada pressão aplicada, não só do tamanho dos poros, mas sobretudo da dimensão dos raios dos acessos aos poros (r_a).

O ensaio realiza-se em três fases sucessivas, tendo sido descrito, entre outros, por Mertz (1991), Hammecker (1993) e Begonha (2001). Na primeira fase, de drenagem, o mercúrio líquido é injectado automaticamente e sucessivamente sob pressões crescentes em poros cada vez mais finos da amostra. A pressão aumenta de 0,5 psia a 30000 psia, permitindo medir diâmetros dos acessos aos poros entre 360 µm e 60 Å. A segunda fase corresponde a uma embebição com mercúrio sob a forma de vapor por desabsorção de mercúrio líquido, sob pressões aplicadas decrescentes de mercúrio líquido. O mercúrio líquido retira-se primeiro dos poros mais finos e, só na parte final desta fase, se retira dos macroporos. O meio poroso vai assim sendo progressivamente embebido com o fluido molhante. No final desta fase, a quantidade de mercúrio retirado da amostra é inferior à injectada no final da fase de drenagem. Este facto deve-se à retenção de gotículas de mercúrio líquido, de pequenas dimensões que se encontram isoladas no interior da rede porosa, sobretudo nos macroporos, constituindo a porosidade retida (N_{HgR}). A terceira fase, não realizada neste trabalho, corresponde a uma segunda drenagem, durante a qual se observa o fenómeno de histerese relativamente à embebição pois, para uma determinada pressão, a amostra contém maior quantidade de mercúrio líquido na fase de embebição do que na terceira fase (segunda drenagem). Segundo Hammecker (1993) e citando outros autores, refere que este fenómeno de histerese é devido a uma variação do ângulo de contacto do mercúrio nas fases de injecção e desabsorção.

Nos ensaios com o porosímetro de mercúrio, determinaram-se: a porosidade total invadida por mercúrio (N_{Hg}); a porosidade retida (N_{HgR}); a macroporosidade (N_{M}), correspondente ao volume poroso constituído por poros com diâmetros de acesso superiores a 7,5 µm, obtido com pressões de injecção inferiores a 1 bar; a microporosidade (N_{μ}), correspondente ao volume poroso constituído por poros com raios de acesso inferiores a 7,5 µm, obtido com pressões de injecção superiores a 1 bar; a microporosidade (N_{μ}), correspondente ao volume poroso constituído por poros com raios de acesso inferiores a 7,5 µm, obtido com pressões de injecção superiores a 1 bar; as dimensões dominantes dos raios dos acessos aos poros e os tipos de distribuição dos raios dos acessos aos poros.

2.3.4 Ensaio de absorção de água por capilaridade

A ascensão da água num tubo capilar de secção circular, colocado verticalmente e aberto nas duas extremidades, uma das quais mergulhada em água, pode ser expressa pela equação de Jurin. Esta equação relaciona inversamente a altura máxima de ascensão da água (h_c) e o raio do capilar (r_c). Se se considerarem valores de r_c inferiores a 100 μ m, a forma do menisco pode ser aproximada a uma calote esférica com raio de curvatura r_m igual a $r_c \times \cos \theta$, em que θ é o ângulo de contacto entre a parede do capilar e a tangente ao menisco do líquido. No caso de o líquido ser a água, θ é igual a 0° , pelo que $r_m = r_c$. A equação de Jurin exprime-se então do seguinte modo:

$$h_{c} = (2 \psi \cos \theta) / (\rho g r_{c})$$
(2.6)

em que ψ é a tensão superficial do líquido em contacto com o ar ($\psi_{água}$ = 0,072 N×m⁻¹ a 20°C), ρ é a massa volúmica do líquido ($\rho_{água}$ = 10³ Kg×m⁻³) e g é a aceleração da gravidade (9,81 m×s⁻²), sendo a pressão capilar P_c dada pela expressão:

$$P_c = \rho g h_c = 2 \psi / r_c$$
 (2.7)

A cinética da embebição de um tubo capilar de secção circular de raio r_c , de comprimento L, sujeito a um escoamento laminar sob um gradiente de pressão ΔP , pode ser traduzida pelo caudal Q, de acordo com a equação de Hagen-Poiseuille:

$$Q = (\pi r_{c}^{4} \Delta P) / (8 \eta L)$$
(2.8)

em que η é viscosidade dinâmica do líquido ($\eta_{água}$ = 1,002×10⁻³ Pa×s⁻¹). No caso da embebição por capilaridade de um tubo vertical, o gradiente de pressão Δ P, responsável pelo escoamento do fluido, resulta, por um lado, da pressão capilar P_c e, por outro, da gravidade. Combinando as expressões 2.7 e 2.8, o caudal vem dado pela seguinte equação:

$$Q = (\pi r_c^4 \times (2 \psi / r_c - \rho g L)) / (8 \eta L)$$
(2.9)

O caudal pode também ser expresso pela equação seguinte:

$$Q = dV / dt = (\pi r_c^2 dL) / dt$$
 (2.10)

Igualando as expressões (2.9) e (3.10) vem:

dL / dt =
$$(r_c^2 \times (2 \psi / r_c - \rho g L)) / (8 \eta L)$$
 (2.11)

Considerando desprezável a influência da gravidade em tubos horizontais e tubos verticais de pequena altura, a expressão 2.11 pode ser escrita da seguinte maneira:

$$L dL = (r_c \psi / 4 \eta) \times dt$$
(2.12)

que, após integração, se transforma na equação de Washburn (Washburn, 1921) dada por:

$$L = ((r_c \psi / 2 \eta) \times t)^{1/2}$$
(2.13)

Esta expressão, permite calcular a posição do nível da água no tubo durante a embebição no instante t. É composta por um termo constante, B, característico do fluido e da geometria do tubo e, um termo variável, este em função da raiz quadrada do tempo, conforme a equação 2.14:

$$L = B t^{1/2}$$
(2.14)

em que B é dado pela expressão:

$$B = r_c^{1/2} \times (\psi / 2 \eta)^{1/2}$$
(2.15)
O volume que penetra em qualquer instante t no capilar é igual a:

$$V = \pi r_c^2 \times L = A t^{1/2}$$
(2.16)

em que o valor de A é dado pela equação seguinte:

$$A = \pi r_{c}^{5/2} \times (\psi / 2 \eta)^{1/2}$$
(2.17)

As expressões 2.14 e 2.16 mostram que existe uma proporcionalidade entre a altura atingida pela franja capilar e a raiz quadrada do tempo, assim como, entre o peso da água absorvida por capilaridade e a raiz quadrada do tempo.

Para uma determinada rocha com um meio poroso perfeitamente unimodal, é possível calcular, conhecendo os coeficientes A e B da rocha, uma rede porosa ideal, constituída por $N_{CAP req}$ capilares cilíndricos com raio equivalente r_{eq} , possuindo uma cinética de embebição igual à do meio poroso da rocha. Os valores de r_{eq} e $N_{CAP req}$ são calculados pelas expressões 2.18 e 2.19.

$$r_{eq} = 2 \eta B^2 / \psi$$
 (2.18)

$$N_{CAP req} = A / (\pi B r_{eq}^2)$$
 (2.19)

Segundo Mertz (1991) e Begonha (2001), o raio equivalente r_{eq} é sempre inferior ao raio médio dos poros medido em lâminas polidas, visto não ter em conta a complexidade das geometrias dos meios porosos, mas apenas um significado hidráulico. Hammecker et al. (1993) e Begonha (2001) referem que, em rochas sedimentares, os raios medidos por análise microscópica são entre 10^3 a 10^4 vezes superiores aos raios equivalentes calculados pela expressão 2.18.

Para a execução do ensaio de absorção de água por capilaridade que se realizou no LEMC, foi necessário secar previamente os trinta provetes cilindricos em estufa (60°C) até peso constante. Posteriormente, foram colocados na vertical sobre uma grelha situada no interior dos recipientes, no fundo dos quais o nível de água destilada foi mantido constante durante todo o ensaio. A alimentação capilar foi assegurada por uma película de água com 2 mm de altura. Os recipientes eram hermeticamente fechados e com temperatura e humidade relativa controladas (20°C e humidade relativa próxima de 100%). A humidade relativa próxima da saturação evitou a sobreposição dos fenómenos de evaporação. Durante o ensaio, acompanhou-se a progressão da embebição capilar por meio da medição a intervalos de tempo crescentes da altura da franja capilar, observada na face externa dos provetes e da tomada do peso.

Este ensaio foi executado três vezes nos trinta provetes cilíndricos. Na primeira vez, os provetes não haviam sido tratados com qualquer produto hidrófugo ou consolidante. Na segunda vez, os provetes foram ensaiados um mês após a aplicação do respectivo tratamento. Depois do ensaio de envelhecimento, os provetes foram de novo submetidos ao ensaio de absorção de água por capilaridade. A Figura 2.5 mostra os equipamentos utilizados no ensaio de determinação da absorção de água por capilaridade e o aspecto dos provetes aquando do início deste ensaio.

Figura 2.5 Equipamentos utilizados no ensaio de absorção de água por capilaridade e aspecto dos provetes durante o ensaio.

Na representação gráfica do ensaio, o aumento de peso dos provetes por unidade de superfície, devido à absorção de água e, a altura da franja capilar (representados em ordenadas) aparecem em função da raiz quadrada do tempo (representada em abcissas), uma vez que a embebição capilar das rochas obedece à equação de Washburn (Washburn, 1921). A partir da representação gráfica, encontraram-se, as equações lineares que melhor se ajustaram aos resultados, calculando-se os valores do aumento do peso por unidade de superfície e unidade de raiz quadrada do tempo (A) e os valores da progressão da ascensão da franja capilar por unidade da raiz quadrada do tempo (B). Deste modo, as curvas aparecem como segmentos de recta, permitindo o cálculo dos referidos parâmetros.

Este facto, adiantado por Mertz (1991), Hammecker (1993) e Hammecker et al. (1993) em rochas sedimentares, foi igualmente verificado em granitos por Castro et al. (1990b, 1991a, 1991b), Alves et al. (1993), Pinto (1993), Begonha et al. (1994), Pinto et al. (1994), Alves e Sequeira Braga (1994, 1995), Pérez-Ortiz et al. (1994), Fort et al. (1995), Alves et al. (1996), Vicente (1996), Sequeira Braga et al. (1996), Delgado Rodrigues et al. (1996), Rosa (1996), Alves (1997), Begonha (2000, 2001, 2002, 2003a, 2003b, 2004b), Ferreira (2004), Moutinho (2005) e Begonha e Fojo (2006) e mesmo em betões por Freitas (1992) e Freitas et al. (1996).

Mertz (1991), Hammecker (1993), Hammecker et al. (1993) e Begonha (2001), verificaram que em provetes com uma rede porosa homogénea, ou seja, com uma porometria unimodal e igualmente repartida em todo o provete, a franja capilar (L) atinge o topo dos provetes ao mesmo tempo que o aumento de peso correspondente ao preenchimento da porosidade livre (Figura 2.6). A ascensão da franja capilar representa-se por um segmento de recta, expressando-se por uma relação do tipo do da equação 2.14. O valor de B corresponde ao declive da recta ajustada aos valores experimentais por meio do método dos mínimos quadrados, expressando-se em cm× $h^{-1/2}$.

Figura 2.6 Ensaio de absorção de água por capilaridade - amostra com rede porosa unimodal.

Relativamente ao aumento de peso por unidade de superfície (dW/dS) em função da raiz quadrada do tempo e, para o mesmo tipo de rede porosa homogénea, os mesmos autores verificaram a existência de dois troços distintos:

- O primeiro troço é definido pela equação de Washburn (Washburn, 1921), com uma cinética de embebição proporcional à raiz quadrada do tempo:

$$dW/S = A t^{1/2}$$
 (2.20)

em que A caracteriza o declive da recta ajustada aos valores experimentais por meio do método dos mínimos quadrados e define a cinética de embebição capilar da rede porosa livre (N_{48}). O valor de A, expresso em g×cm⁻²×h^{-1/2}, é bastante mais elevado que o relativo ao segundo troço da curva;

- Um segundo troço de declive A', nitidamente menos acentuado, que corresponde também a uma cinética de embebição proporcional a $t^{1/2}$. Esta fase de embebição é atribuída à difusão na água de bolhas de ar que permaneceram retidas na rede porosa, sendo controlada pelas leis de Fick,

correspondendo, segundo Mertz (1991), à reabsorção da porosidade retida. O ar retido é comprimido, difundindo-se na água tanto mais rapidamente quanto mais importantes são a superfície específica das bolhas de ar e a quantidade de ar retido. O valor de A' é igualmente expresso em $g \times cm^{-2} \times h^{-1/2}$.

Hammecker (1993), Hammecker et al. (1993) e Begonha (2001), referem que em provetes homogéneos, quando a franja capilar atinge o topo dos provetes, a fase de embebição capilar completa-se e, o volume ou peso de água que penetrou na rede porosa corresponde à embebição da porosidade livre às quarenta e oito horas (N_{48}). Aliás, desde que a rede porosa seja perfeitamente homogénea, os valores de A e B estão ligados entre si pela porosidade livre, dado que o valor de A é calculado em relação à superfície da base do provete. Se se considerar, que apenas a porosidade livre intervém activamente na fase de embebição do provete, A e B relacionam-se de acordo com a seguinte expressão, em que N_{48} vem expressa em percentagem:

$$B \approx A \times 100 / N_{48} \tag{2.21}$$

No caso de amostras com rede porosa bimodal, verifica-se, em determinado instante t_1 , uma desaceleração do coeficiente de capilaridade A, facto explicado por Mertz (1991), Hammecker (1993) e Begonha (2001) devido à existência de duas famílias de poros com dimensões diferentes. A curva de absorção de água evolui desde o início do ensaio até ao instante t_1 segundo uma recta de declive A, reflectindo a embebição capilar total de uma família de poros. Se a progressão da franja capilar evoluir segundo uma recta de declive B até ao instante t_1 , coincidente com a chegada da franja capilar ao topo do provete, significando que a primeira família de poros apresenta-se uniformemente repartida por todo o provete, desde a base até ao topo. Segundo os autores, a primeira família de poros a ser preenchida é a de maior volume e, não forçosamente a constituída por poros de maior dimensão. Desde o instante t_1 , momento em que se dá a ruptura do declive da curva de absorção de água, até ao instante t_2 , a absorção evolui segundo um novo segmento de recta de declive A_1 menor que A, característica comum a todas as embebições naturais deste tipo de rede porosa. Esta fase corresponde à embebição mais lenta de uma segunda família de poros, também ela uniformemente repartida em todo o provete. O instante t_2 coincide com a absorção correspondente à embebição da porosidade livre às quarenta e oito horas. A partir deste instante, entra-se no regime de absorção lenta da porosidade retida com declive A'. A figura 2.7 traduz a evolução da franja capilar (L) e da absorção de áqua (dW/dS) no tipo de rede bimodal. Se existirem mais de duas famílias de poros, uniformemente distribuídas por todo o provete, existe igual número de troços rectilíneos de declives sucessivamente menores antes de se atingir a absorção correspondente à porosidade livre às quarenta e oito horas. Estes segmentos de recta, traduzem velocidades de saturação da rede porosa interligada decrescentes com o tempo e, quanto maior o seu número, maior a heterogeneidade da rede porosa livremente acessível à áqua.

Figura 2.7 Ensaio de absorção de água por capilaridade - amostra com rede porosa bimodal.

2.3.5 Ensaio de evaporação

Na evaporação de provetes previamente saturados, analisa-se a difusão do vapor de água no ar, fenómeno que é regido pelas leis de difusão de Fick. Como nos ensaios de evaporação o fluxo é unidireccional, as duas leis de Fick podem ser expressas pelas equações (2.22) e (2.23) em que q é o fluxo do vapor de água, expresso em $g \times cm^{-2} \times h^{-1}$, D o coeficiente de difusão, expresso em $cm^{2} \times h^{-1}$ e dC/dx é o gradiente da concentração de vapor de água na direcção x, exprimindo-se em $g \times cm^{-3} \times cm^{-1}$.

$$q = -D \times dC/dx \tag{2.22}$$

A primeira lei de Fick determina o fluxo de evaporação, quando as moléculas de vapor de água estão submetidas a um gradiente de pressão parcial, não podendo, senão ser aplicada, quando a repartição das moléculas de vapor de água ou o perfil das concentrações são conhecidos em determinado instante.

Como o fluxo de evaporação q é sempre negativo, considerar-se-á, em seguida, apenas o seu valor absoluto.

A segunda lei de Fick determina a repartição das moléculas de vapor de água ao longo do tempo e do espaço, durante o processo de difusão, correspondendo a uma equação de conservação da massa, exprimindo-se pela seguinte expressão:

$$dC/dt = D \times (d^2C/dx^2)$$
(2.23)

em que C é a concentração do vapor de água no ar, t o tempo, x o comprimento e D o coeficiente de difusão do vapor de água no ar, calculado pela equação empírica de De Vries e Kruger (2.24):

$$D (cm^{2} \times s^{-1}) = 0,217 \times (P_{r} / P) \times (T / T_{r})^{1,88}$$
(2.24)

em que P_r é a pressão de referência (1,013×10⁵ Pa), P a pressão atmosférica (Pa), T_r a temperatura absoluta de referência (273,15 °K) e T a temperatura durante o ensaio (°K).

A segunda lei de Fick analisa, pois, a evolução do declive do perfil da concentração em função da distância para um determinado tempo.

A descrição da cinética de evaporação da água numa rocha (rede porosa complexa), pode ser analisada através do estudo de modelos simples, de modo a quantificar determinadas grandezas responsáveis pela evaporação das rochas. Partindo deste pressuposto, considera-se a rede porosa de uma rocha como um conjunto de tubos capilares cilíndricos, para os quais a formulação matemática dos movimentos da água e do vapor de água são relativamente simples.

Se se considerar um tubo capilar cheio de água, em que um orifício está em contacto com uma massa de ar com uma pressão parcial de vapor de água p_1 , inferior à pressão parcial da massa de ar saturada p_s , o fluxo de evaporação exprime-se pela seguinte equação:

$$q = \kappa \times (p_s - p_1) / h \tag{2.25}$$

em que o factor de evaporação κ , expresso em g×Pa⁻¹×cm⁻¹×h⁻¹ é dado pela equação (3.26):

$$\kappa = D / RT \tag{2.26}$$

Em condições isotérmicas, os parâmetros que influenciam o fluxo de evaporação são a humidade relativa (p_W / p_S) e a distância h que separa o nível da água da massa de ar com a humidade relativa considerada.

Nestas condições, podem ocorrer duas situações: O nível da água mantém-se constante a uma distância h do orifício superior do tubo, através do qual ocorre a evaporação, ou o nível da água baixa no tubo durante o ensaio, variando em função do tempo, ou seja, a distância h = f(t).

Na primeira situação, considera-se o nível da água fixo a uma distância h do orifício do tubo. Verificase que um regime estacionário é atingido, quando a pressão parcial do vapor de água na massa de ar exterior ao tubo é mantida constante, estabelecendo-se um gradiente linear da pressão parcial do vapor de água (p_w) entre a superfície da água e o orifício do tubo. Dado que para x = 0, se tem $p_w = p_1$ e, que para x = h se tem $p_w = p_S$, a variação de p_w é linear do tipo:

$$p_{w} = (p_{s} - p_{1}) \times x / h + p_{1}$$
(2.27)

Nesta primeira situação, o fluxo de evaporação q permanece constante ao longo do tempo:

$$q = \kappa \times (p_s - p_1) / h \tag{2.28}$$

Calculando-se o fluxo de evaporação para distâncias crescentes de h e para determinadas humidades relativas (p_1 / p_s), verifica-se que o valor do fluxo é mais influenciado pelo valor de h do que pela pressão parcial do vapor de água na massa de ar (p_1). Qualquer que seja a distância h considerada e, para diferentes humidades relativas, existe sempre uma razão constante entre os valores do fluxo q. Pelo contrário, para um mesmo valor de humidade relativa, observam-se fortes variações do fluxo de evaporação em função de h, principalmente na proximidade da superfície superior do tubo. O valor de q, calculado pela equação (2.28), é infinito ao nível do orifício do tubo, dado h ser igual a zero. Tal valor não é realista, uma vez que, o fluxo de evaporação é também sempre controlado por outros factores como a agitação do meio (vento), que não obedece às leis de difusão. Se h for igual a zero, cria-se uma indeterminação e, para a levantar, considerando ainda que a pressão parcial do vapor de água em contacto com o orifício do tubo permanece constante. Jouany introduziu, no cálculo de q, um parâmetro suplementar ϵ_a que depende da agitação do ar:

$$q = \kappa \times (p_s - p_1) / (h + \varepsilon_a)$$
(2.29)

Assim, quando h = 0, a equação (2.29) vem igual a:

$$q = \kappa \times (p_s - p_1) \times \alpha \tag{2.30}$$

com α igual a $1/\epsilon_a$. O parâmetro α depende da agitação do meio, sendo determinado experimentalmente por medição do fluxo de evaporação q_{exp} de uma superfície livre sujeita às mesmas condições de evaporação da água contida no tubo:

$$\alpha = q_{exp} / (\kappa \times (p_s - p_1))$$
(2.31)

O parâmetro ε_a corresponde à altura limite acima da qual o valor de p_1 se mantém constante. Hammecker (1993) calculou os fluxos de evaporação a partir da equação (2.29), para uma humidade relativa de 30% ($p_1 / p_s = 0,3$) e para diferentes valores de ε_a . Para um tubo de 0,1 m, verificou que, desde que $\varepsilon_a > 0,01$ m, o fluxo de evaporação q não varia ou quase não varia em função de h. Concluiu assim que a agitação do ar acima do tubo tinha uma importância primordial no controlo do fluxo de evaporação.

Na segunda situação, a altura h é função do tempo. O fluxo de evaporação q pode também ser exprimido como uma variação da massa m por unidade de superfície S em função do tempo:

$$q = dm/dt \times (1/S) \tag{2.32}$$

Supondo que a variação da altura h da água num tubo cilíndrico durante a evaporação corresponde a uma sequência de regimes estacionários, isto é, para cada altura, o gradiente de pressão parcial do vapor de água é constante e, supondo ainda que no instante t_0 o tubo está cheio de água e o valor de x_0 é igual a zero, o valor de h é dado pela expressão:

$$h = -\varepsilon_a + (\varepsilon_a^2 + 2 \times (\kappa / \rho) \times (p_s - p_1) \times (t - t_0))^{1/2}$$
(2.33)

em que ρ é a massa volúmica da mistura de ar e vapor de água (g×cm⁻³).

Sob o ponto de vista puramente teórico, ou seja, não atendendo ao parâmetro ε_{a} , a cinética de retracção do menisco, desde o orifício do tubo em direcção ao interior, é função da raiz quadrada do tempo, logo que não haja novo fornecimento de água ao tubo:

$$h = (2 \times (\kappa / \rho) \times (p_s - p_1)^{1/2} \times t^{1/2}$$
(2.34)

A equação (2.33) traduz uma lei parabólica comum aos fenómenos de difusão. Sob condições reais, existe sempre um parâmetro ε_a dependente da velocidade de homogeneização do ar acima do tubo. Assim, a variação de h em função do tempo depende da razão entre os valores de ε_a e de $2\times(\kappa/\rho)\times(p_s-p_1)\times t$. Expressando-se ε_a como uma altura, a razão h/ ε_a é que determina a evolução desta função.

Quanto mais homogeneizado for o ar acima do tubo, menor é o valor de ε_a e, mais próxima das condições teóricas se realiza a evaporação, variando h em função da raiz quadrada do tempo. As condições sob as quais se efectuam os ensaios de evaporação apresentam, normalmente, valores de ε

a suficientemente pequenos, de modo a que a cinética da evaporação obedeça a uma relação do tipo $h = constante \times t^{1/2}$. Derivando a variação de h em relação ao tempo, considerarando que no instante t $= t_0, x_0 = 0$ e, que o ar acima do tubo está bem homogeneizado (h >> ε_a), obtém-se a seguinte expressão do fluxo de evaporação:

$$q = dh/dt = (\kappa \times (p_s - p_1) / (2 \rho t))^{1/2}$$
(2.35)

O fluxo de evaporação é inversamente proporcional à raiz quadrada do tempo, sendo forte no início do ensaio, baixa rapidamente e tendendo para zero quando o tempo tende para infinito. Em tubos de comprimento finito I, q anula-se quando h = I. Hammecker (1993) verificou que a variação do fluxo de evaporação, em função do tempo, depende fortemente da humidade relativa do ar ambiente (p_w / p_s).

A quantificação do fluxo de evaporação q permite a previsão das condições e velocidade de secagem de um tubo sob determinadas condições externas de humidade relativa, de temperatura e do parâmetro ε_a . De realçar, que as dimensões do tubo (diâmetro ou altura) não intervêm nas equações, uma vez que na lei de Fick, tal como é apresentada na equação (2.35), estes parâmetros são considerados como desprezáveis. No entanto, em tubos com diâmetros na ordem do centímetro ou decímetro, os resultados experimentais afastam-se significativamente dos previstos nos cálculos. A explicação para esta discrepância de resultados deve-se à crescente facilidade de penetração do vento com o aumento do diâmetro dos tubos, perturbando o gradiente de pressão parcial do vapor de água.

A primeira lei de Fick (equação 2.22) mostra que a velocidade de difusão do vapor de água, durante a fase de evaporação, depende do gradiente da concentração e do coeficiente de difusão D, o qual é tanto maior quanto maior a temperatura. Recorrendo à expressão empírica de D, formulada por De Vries e Kruger (equação 2.24) e, para uma pressão de 1 atm (P = 1 atm = 1,013 bar = 1,013×10⁵ Pa = P_r), verifica-se que a variação de D com a temperatura é quase linear, sendo o "declive" muito fraco. Com efeito, a variação do coeficiente de difusão D, para oscilações de temperatura de ± 5 °C em torno da temperatura de 20°C (D_{20°C} = 0,2478 cm²×s⁻¹), é muito pequena, estando compreendida entre ± 3,2% (0,2399 cm²×s⁻¹ ≤ D ≤ 0,2558 cm²×s⁻¹). As condições de temperatura do laboratório e as pequenas variações de temperatura, que inevitavelmente ocorreram enquanto se efectuavam os ensaios de evaporação, tiveram, portanto, uma influência que se pode considerar como desprezável no valor do coeficiente de difusão D.

Os trinta provetes anteriormente descritos foram previamente submetidos a embebição e imersão de água desionizada durante 48 horas, apresentando então uma saturação hídrica de 100% relativamente à porosidade livre acessível à água (N_{48}). Os ensaios de evaporação realizaram-se em recipientes hermeticamente fechados, sob uma temperatura de 20 °C e humidade relativa de 75%,

graças à presença de uma solução aquosa sobressaturada de NaCl puro. De facto, o controlo da humidade relativa é mantido pelo excesso de NaCl, que não diminui a humidade relativa do ar em relação a uma solução saturada do mesmo sal. Além disso, o excesso de sal permite manter a humidade relativa do recipiente durante a fase de secagem dos provetes, apesar da consequente libertação de vapor de água. Uma das bases de cada provete constitui a superfície por onde se realiza a evaporação, envolvendo-se, as restantes superfícies do cilindro, com uma película aderente de polietileno sem PVC, presa por um elástico, que evita qualquer perda de vapor de água.

Os provetes, após a embebição e imersão durante 48 horas em água, são pesados e imediatamente envolvidos por uma película aderente de polietileno sem PVC (exceptuando uma das bases) e inseridos num recipiente hermeticamente fechado com humidade relativa de 75% controlada por uma solução aquosa sobressaturada em NaCl. O ensaio prossegue com o registo do tempo e da massa de cada provete até esta estacionar. Tal como o ensaio de absorção de água por capilaridade, este ensaio foi efectuado três vezes nos trinta provetes cilíndricos, sendo a primeira vez realizado nos provetes que não haviam sido tratados com qualquer produto de tratamento, a segunda vez, nos mesmos provetes mas já com a aplicação dos quatro produtos de tratamento e a última vez, depois de terem ocorrido os ensaios de envelhecimento. A Figura 2.8 mostra os equipamentos utilizados no ensaio de evaporação e o aspecto dos provetes aquando o início deste ensaio.

Figura 2.8 Ensaio de evaporação: a) Dispositivos utilizados na determinação do ensaio de evaporação; b) Aspecto dos provetes no início deste ensaio.

O ensaio pode ser traduzido pela curva da perda de peso por unidade de superfície (dW/S) em função do tempo (t). Esta curva pode ser dividida em três segmentos distintos, designados por 1, 2 e 3, conforme se pode verificar na Figura 2.9, representativa da curva tipo obtida:

1 - um primeiro segmento de recta de forte declive que corresponde a um período no qual o fluxo de evaporação do vapor de água q é constante;

2 - um segmento intermédio curvo em que há uma diminuição progressiva do valor de q;

3 - um segundo segmento rectilíneo com fluxo de evaporação constante, mas de declive muito inferior ao primeiro segmento.

Figura 2.9 Curvas tipo da perda de peso por unidade de superfície, em função do tempo.

No primeiro segmento de fluxo de evaporação constante, a evaporação dá-se na superfície do provete, sendo nulo o valor de h. Esta primeira fase de dessaturação sob fluxo constante mantém-se até se atingir uma saturação hídrica (s) designada por saturação crítica (S_c). A partir do instante t(S_c) em que se atinge a saturação crítica, o valor de h é diferente de zero e varia com o tempo, ou seja, a evaporação deixa de se realizar na superfície do provete, passando a efectuar-se no seu interior. Nesta segunda fase, a quantidade de vapor de água libertada por evaporação é superior à quantidade de água que o provete consegue fornecer em direcção à superfície. Atingida a saturação crítica, a superfície do provete deixa de permanecer molhada, passando a estar seca. Abaixo da superfície de evaporação, o provete mantém-se saturado.

2.3.6 Aplicação dos produtos consolidantes

As amostras dos dois consolidantes usados foram enviadas pelas empresas que os comercializam em Portugal, a BIU Internacional e a Brightstone. O consolidante Tegovakon V da firma BIU Internacional é constituído por ortossilicato de tetraetilo $(Si(OC_2H_5)_4)$ e por polidimetilsiloxano $((CH_3)_3SiO[(CH_3)_2SiO]_nSi(CH_3)_3)$. Relativamente à firma Brighstone, utilizou-se o consolidante HMK S 41 Steinverfestiger OH que é formado por ortossilicato de tetraetilo $(Si(OC_2H_5)_4)$ e por dibutil dilaurato de estanho $((CH_3CH_2CH_2CH_2)_2Sn[OCO(CH_2)_{10}CH_3]_2)$. As fichas técnicas dos dois produtos apresentam-se no Anexo 1.

Cada um dos dois consolidantes foi aplicado sobre cada uma das bases de nove provetes cilíndricos, previamente secos em estufa a 60°C (Figura 2.10), e sobre todas as superfícies das segunda e terceira partes de patelas cilíndricas, também previamente secas em estufa a 60°C, com auxílio de um pincel até recusa aparente, de modo a conseguir-se uma maior possível profundidade de penetração.

Figura 2.10 Aspecto dos provetes logo após a aplicação dos dois produtos consolidantes (2005/04/18): a) Após aplicação do consolidante Tegovakon V; b). Após a aplicação do consolidante HMK S 41.

Trinta dias após a aplicação dos dois consolidantes, não se verificou qualquer variação entre a cor inicial dos provetes (antes da aplicação dos produtos de tratamento) e a sua cor final (depois da aplicação de qualquer um dos dois consolidantes). Contudo, os provetes ainda apresentavam um aspecto molhado vinte e quatro horas após a aplicação de qualquer um dos dois consolidantes, idêntico ao exibido logo após a aplicação dos dois produtos. A única alteração encontrada foi a expansão da zona impreganda pelos consolidantes (Figura 2.11).

No Quadro 2.3, apresentam-se os provetes cilíndricos e as repectivas designações após o seu tratamento com os produtos consolidantes Tegovakon V e HMK S 41. No Quadro 2.4, mostram-se as partes das patelas que foram tratadas com cada um dos consolidantes.

Figura 2.11 Aspecto dos provetes 24 horas após a aplicação dos dois produtos consolidantes (2005/04/19): a) Após a aplicação do consolidante Tegovakon V; b) Após a aplicação do consolidante HMK S 41.

Provete (Designação inicial)	Designação do provete após a aplicação do consolidante	Consolidante aplicado
IMC 2.3	IMC 2.3T	TEGOVAKON V
IMC 2.4	IMC 2.4T	HMK S41
IMC 3.1	IMC 3.1T	TEGOVAKON V
IMC 3.2	IMC 3.2T	HMK S41
IMC 5.3	IMC 5.3T	TEGOVAKON V
IMC 5.4	IMC 5.4T	HMK S41
IMC 6.1	IMC 6.1T	TEGOVAKON V
IMC 6.2	IMC 6.2T	HMK S41
IMC 6.3	IMC 6.3T	TEGOVAKON V
IMC 7.1	IMC 7.1T	HMK S41
IMC 7.2	IMC 7.2T	TEGOVAKON V
IMC 7.3	IMC 7.3T	HMK S41
IMC 8.1	IMC 8.1T	HMK S41
IMC 8.2	IMC 8.2T	TEGOVAKON V
IMC 8.3	IMC 8.3T	HMK S41
IMC 9.1	IMC 9.1T	TEGOVAKON V
IMC 9.2	IMC 9.2T	HMK S41
IMC 9.3	IMC 9.3T	TEGOVAKON V

Quadro 2.3	Provetes cilíndricos,	sua designação	após apli	cação do	o produto c	le tratamento
	cor	isolidante e indio	cação des	te.		

Patela	Consolidante aplicado
IMC 3.1.2	TEGOVAKON V
IMC 3.2.2	HMK S 41
IMC 6.1.2	TEGOVAKON V
IMC 6.2.2	HMK S 41
IMC 7.1.2	TEGOVAKON V
IMC 7.2.2	TEGOVAKON V
IMC 8.1.2	HMK S 41
IMC 9.3.2	TEGOVAKON V

Quadro 2.4 Partes das patelas e seu respectivo tratamento consolidante aplicado.

2.3.7 Aplicação dos produtos hidrófugos

As amostras dos dois hidrófugos foram enviadas pelas firmas que os comercializam em Portugal, a Sika (hidrófugo Sikagard 700 S) e a Silicem (hidrófugo HB Siliker S 101). As fichas técnicas dos dois produtos apresentam-se no Anexo 1.

Cada um dos dois hidrófugos foi aplicado em seis provetes cilíndricos, previamente secos em estufa a 60°C, com auxílio de um pincel sobre uma das bases e sobre a superfície cilíndrica adjacente à base tratada numa altura aproximada de 1 cm (Figura 2.12). A aplicação dos dois hidrófugos na base de cada provete foi realizada em duas direcções perpendiculares. Na superfície cilíndrica de cada provete, os hidrófugos aplicaram-se em duas demãos consecutivas.

Figura 2.12 Aspecto dos provetes logo após a aplicação dos dois produtos hidrófugos (2005/04/18): a) Após a aplicação do hidrófugo Sikagard 700 S; b) Após a aplicação do hidrófugo HB Siliker S 101. Vinte e quatro horas após a aplicação dos dois produtos de tratamento, já não se verificava qualquer variação na cor dos provetes tratados com qualquer dos dois hidrófugos, não se registando diferença entre a cor após a aplicação de um ou de outro produto de tratamento e a cor inicial dos provetes antes da aplicação de qualquer dos dois produtos (Figura 2.13).

Figura 2.13 Aspecto dos provetes 24 horas após a aplicação dos dois produtos hidrófugos (2005/04/19): a) Após a aplicação do hidrófugo Sikagard 700 S; b) Após a aplicação do hidrófugo HB Siliker S 101.

No Quadro 2.5, apresentam-se os provetes cilíndricos e as designações que tomaram após o seu tratamento com os hidrófugos Sikagard 700 S e HB Siliker S 101.

Provete (Designação inicial)	Designação do provete após a aplicação do hidrófugo	Hidrófugo aplicado
IMC 1.1	IMC 1.1T	SIKAGARD 700 S
IMC 1.2	IMC 1.2T	HB SILIKER S 101
IMC 1.3	IMC 1.3T	HB SILIKER S 101
IMC 1.4	IMC 1.4T	SIKAGARD 700 S
IMC 2.1	IMC 2.1T	SIKAGARD 700 S
IMC 2.2	IMC 2.2T	HB SILIKER S 101
IMC 4.1	IMC 4.1T	HB SILIKER S 101
IMC 4.2	IMC 4.2T	SIKAGARD 700 S
IMC 4.3	IMC 4.3T	SIKAGARD 700 S
IMC 4.4	IMC 4.4T	HB SILIKER S 101
IMC 5.1	IMC 5.1T	HB SILIKER S 101
IMC 5.2	IMC 5.2T	SIKAGARD 700 S

Quadro 2.5	Indicação do	produto	hidrófugo	aplicado	em	cada	provete	e desig	nação	deste,	antes	e
		após a	aplicação	do produ	ito d	le tra	tamento.					

2.3.8 Ensaios de envelhecimento acelerado

Os ensaios de envelhecimento acelerado iniciaram-se três meses e meio após a aplicação dos quatro produtos de tratamento, sendo executados em duas partes distintas.

Na primeira parte, os provetes cilindricos e as patelas estiveram sujeitos durante 46 dias ao ambiente exterior no terraço do Edifício H da Faculdade de Engenharia da Universidade do Porto. A exposição decorreu entre os dias 5 de Agosto de 2005 e 20 de Setembro de 2005, sob condições de intensa radiação solar e temperaturas elevadas. Decorrido este ensaio, os provetes não revelaram qualquer modificação de cor ou tonalidade (Figura 2.14).

Aspecto dos provetes no instante em que foram colocados no ambiente exterior (2005/08/05)

Aspecto dos provetes depois da exposição ao ambiente exterior (2005/09/20)

Figura 2.14 Aspecto dos provetes antes e depois de estarem sujeitos a exposição ambiental.

Finalizada a primeira parte dos ensaios de envelhecimento acelerado, os provetes cilíndricos e as patelas foram submetidos a ciclos alternados de aquecimento/arrefecimento (segunda parte). De segunda a sexta-feira, entre as 9 horas e as 17 horas, os provetes estiveram submetidos a uma tempertura de 80°C e entre as 17 horas e as 9 horas, os provetes estiveram sujeitos a uma tempertura de -10°C. Entre as 17 horas de sexta-feira e as 9 horas de segunda-feira (fim-de-semana), os provetes estiveram sujeitos a uma temperatura de -10°C. Entre as 17 horas de sexta-feira e as 9 horas de segunda parte dos ensaios de envelhecimento acelerado decorreu no LEMC e correspondeu a 31 ciclos diários de aquecimento/arrefecimento e a seis fases mais extensas (fins-de-semana) de arrefecimento (Figura 2.15). Os provetes não revelaram qualquer modificação de cor ou de tonalidade após a realização dos ensaios de envelhecimento acelerado, relativamente à cor e tom que exibiam antes da realização dos mesmos.

Nos Quadros 2.6 e 2.7, apresentam-se os provetes cilíndricos, as partes das patelas e as designações que tomaram, após terem sido submetidos a tratamento, seguido dos ensaios de envelhecimento acelerado.

2.3.9 Profundidade de penetração dos produtos consolidantes

A profundidade de penetração dos produtos consolidantes (P_p) foi determinada por dois processos:

 por medição directa da zona "molhada", imediatamente depois da aplicação do consolidante até recusa aparente, no sentido longitudinal dos dezoito provetes e a partir da base em que foi aplicado o produto consolidante;

 por medição, no gráfico do ensaio de absorção de água por capilaridade, da altura da franja capilar no instante correspondente à inflexão, isto é, no momento em que se verifica a variação de declive da curva da ascensão capilar.

	2ª faira			4ª feira		5ª feira			6ª feira			Sábado		Dominor	ĥ		2ª feira			3ª feira			4ª feira		5ª feira			6ª feira			Sábado			Domingo			2ª feira		28 foirs	2 Ielia		4ª feira			5ª feira			6ª feira			Sabado		Dominor	ĥ		2ª feira			3ª feira
Dia	20.09.2005	2004	1000 00 10	21-09-2005		22-09-2005			23-09-2005			24-09-2005		25.00.2005			26-09-2005			27-09-2005			28-09-2005		29-09-2005			30-09-2005			01-10-2005			02-10-2005			03-10-2005		04-10-2005	C007-01-40		05-10-2005			06-10-2005			07-10-2005		00 10 00L	9007-01-90		09-10-2005			10-10-2005			11-10-2005
Horas	Oh às 9h Oh às 17h	17h às 24h	0h às 9h	9h às 17h 17h àr 24h	0h às 9h	9h às 17h	17h às 24h	Oh às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h àc 17h	17h às 24h	Oh às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	Nh às Oh	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 17h	17h às 24h	Oh às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	00 as 90	47 b 2 1/h	0h àc 0h	Oh às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h
	da foira			5ª feira		6ª feira			Sábado			Domingo		Ca foiro	1		3ª feira			4ª feira			5ª feira		6ª feira			Sábado			Domingo			2ª feira			3" feira		40 foirs	4- IGII d		5ª feira			6ª feira			Sábado			nomingo		3ª feira	1		3ª feira			4ª feira
Dia	12-10-2005	0004-01-41		13-10-2005		14-10-2005			15-10-2005			16-10-2005		17-10-2005			18-10-2005			19-10-2005			20-10-2005		21-10-2005			22-10-2005			23-10-2005			24-10-2005			25-10-2005		26-10-2005	CON7-01-07		27-10-2005			28-10-2005			29-10-2005		00 10 000L	9002-01-02		31-10-2005			01-11-2005			02-11-2005
Horas	Ohàs 9h 9hàs 17h	17h às 24h	0h às 9h	9hàs 17h 17hàc 34h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	1 7h às 24h	0h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9hàs 17h	0h às 0h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9hàs 17h	17h às 24h	0hàs 9h	9h às 1 7h	17h às 24h	0h às 17h	17h às 24h	0hàs 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9hàs 17h	17h às 24h	Un as 9n	9h as 1 /h	0 h \r 0 b	Ohàs 17h	17h às 24h	0h às 9h	9h às 17h	17h às 24h	0h às 9h	9h às 17h
			-					-	-		-											-														-								-			-											-	

Figura 2.15 Ciclos de aquecimento e de arrefecimento a que estiveram sujeitos os provetes na segunda parte dos ensaios de envelhecimento acelerado.

Tipo de granito	Provete (Designação inicial)	Designação do provete após ensaio de envelhecimento acelerado	Produto de tratamento aplicado
	IMC 1.1	IMC 1.1 E	SIKAGARD 700 S
	IMC 1.2	IMC 1.2 E	HB SILIKER S 101
	IMC 1.3	IMC 1.3 E	HB SILIKER S 101
	IMC 1.4	IMC 1.4 E	SIKAGARD 700 S
	IMC 2.1	IMC 2.1 E	SIKAGARD 700 S
	IMC 2.2	IMC 2.2 E	HB SILIKER S 101
	IMC 2.3	IMC 2.3 E	TEGOVAKON V
	IMC 2.4	IMC 2.4 E	HMK S 41
Granito de duas	IMC 3.1	IMC 3.1 E	TEGOVAKON V
micas de grao médio	IMC 3.2	IMC 3.2 E	HMK S 41
	IMC 4.1	IMC 4.1 E	HB SILIKER S 101
	IMC 4.2	IMC 4.2 E	SIKAGARD 700 S
	IMC 4.3	IMC 4.3 E	SIKAGARD 700 S
	IMC 4.4	IMC 4.4 E	HB SILIKER S 101
	IMC 5.1	IMC 5.1 E	HB SILIKER S 101
	IMC 5.2	IMC 5.2 E	SIKAGARD 700 S
	IMC 5.3	IMC 5.3 E	TEGOVAKON V
	IMC 5.4	IMC 5.4 E	HMK S 41
	IMC 6.1	IMC 6.1 E	TEGOVAKON V
	IMC 6.2	IMC 6.2 E	HMK S 41
	IMC 6.3	IMC 6.3 E	TEGOVAKON V
	IMC 7.1	IMC 7.1 E	HMK S 41
	IMC 7.2	IMC 7.2 E	TEGOVAKON V
Microgranito de	IMC 7.3	IMC 7.3 E	HMK S 41
duas micas	IMC 8.1	IMC 8.1 E	HMK S 41
	IMC 8.2	IMC 8.2 E	TEGOVAKON V
	IMC 8.3	IMC 8.3 E	HMK S 41
	IMC 9.1	IMC 9.1 E	TEGOVAKON V
	IMC 9.2	IMC 9.2 E	HMK S 41
	IMC 9.3	IMC 9.3 E	TEGOVAKON V

Quadro 2.6 Designações dos provetes cilíndricos e respectivo tipo de granito após terem estado submetidos a tratamento e ensaios de envelhecimento acelerado e seu respectivo produto de tratamento aplicado.

Designação das terceiras partes das patelas após ensaio de envelhecimento acelerado	Produto de tratamento aplicado
IMC 3.1.3 E	TEGOVAKON V
IMC 3.2.3 E	HMK S 41
IMC 6.1.3 E	TEGOVAKON V
IMC 6.2.3 E	HMK S 41
IMC 7.1.3 E	TEGOVAKON V
IMC 7.2.3 E	TEGOVAKON V
IMC 8.1.3 E	HMK S 41
IMC 9.3.3 E	TEGOVAKON V

Quadro 2.7 Designações das terceiras partes das patelas após terem estado submetidas a tratamento e ensaios de envelhecimento acelerado.

2.4 Resultados dos ensaios Realizados

2.4.1 Densidade aparente

2.4.1.1 Antes da aplicação dos produtos de tratamento

No Quadro 2.8, apresentam-se os valores da densidade aparente (d), obtidos nos trinta provetes cilíndricos antes da aplicação dos produtos de tratamento.

Verifica-se que, no granito de duas micas de grão médio, os valores da densidade aparente variam entre 2,27 e 2,48 e nos provetes de microgranito de duas micas, a densidade aparente está compreendida entre 2,48 e 2,51. É também possível concluir que os valores da densidade aparente variam consideravelmente de provete para provete no granito de duas micas de grão médio e que na Igreja Matriz de Caminha, se utilizaram pedras dos dois tipos de granito com diferentes graus de meteorização herdada na pedreira.

Conforme se pode verificar no Quadro 2.9, os valores da densidade aparente dos provetes em estudo são da mesma ordem de grandeza dos determinados em diversos edifícios e monumentos construídos com granitos de duas micas no Norte de Portugal.

Tipo de granito	Provete cilíndrico	d
	IMC 1.1	2,39
	IMC 1.2	2,37
	IMC 1.3	2,36
	IMC 1.4	2,33
	IMC 2.1	2,31
	IMC 2.2	2,28
	IMC 2.3	2,28
	IMC 2.4	2,27
Granito de duas micas	IMC 3.1	2,44
de grão médio	IMC 3.2	2,43
	IMC 4.1	2,46
	IMC 4.2	2,45
	IMC 4.3	2,46
	IMC 4.4	2,47
	IMC 5.1	2,45
	IMC 5.2	2,48
	IMC 5.3	2,43
	IMC 5.4	2,43
	IMC 6.1	2,48
	IMC 6.2	2,48
	IMC 6.3	2,48
	IMC 7.1	2,49
	IMC 7.2	2,49
Microgranito de	IMC 7.3	2,50
duas micas	IMC 8.1	2,48
	IMC 8.2	2,48
	IMC 8.3	2,50
	IMC 9.1	2,51
	IMC 9.2	2,50
	IMC 9.3	2,48

Quadro 2.8 Valores da densidade aparente (d) nos provetes cilíndricos de granito de duas micas de grão médio e de microgranito de duas micas.

Monumento ou edifício estudado	d
Igreja Matriz de Caminha – granito de grão médio	2,27 – 2,48
Igreja Matriz de Caminha – microgranito	2,48 – 2,51
Convento de São Gonçalo de Amarante – granito de grão fino (Castro et al, 1991)	2,39 – 2,50
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (Begonha, 2000)	2,38 – 2,52
Hospital de Santo António – pedras de granito do Porto afectadas por placas (Begonha, 2001)	2,42 – 2,56
Hospital de Santo António – pedras de granito do Porto afectadas por desagregação granular (Begonha, 2001)	2,52 – 2,53
Mosteiro de São João de Tarouca – granito de Vila Chã (Begonha, 2002)	2,35 – 2,42
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (Begonha, 2003a)	2,39 – 2,59
Igreja de São Pedro de Rates – granito de grão fino a médio (Begonha, 2003a)	2,42 – 2,53
Igreja Matriz de Espinho – granito de grão grosseiro (Begonha, 2003b)	2,52 – 2,58
Igreja Matriz de Espinho – granito de grão médio (Begonha, 2003b)	2,54 – 2,56
Convento de São Gonçalo de Amarante – granito de grão fino (Begonha, 2004b)	2,49 – 2,52
Igreja de Santa Maria de Leça – granito do Porto (Moutinho, 2005)	2,52 - 2,55

Quadro 2.9 Valores mínimos e máximos da densidade aparente (d), obtidos em granitos de duas micas de monumentos e edifícios do Norte de Portugal.

2.4.2 Porosidade livre às quarenta e oito horas

2.4.2.1 Antes da aplicação dos produtos de tratamento

Os resultados da porosidade livre às quarenta e oito horas (N_{48}), obtidos nos trinta provetes cilíndricos antes da aplicação dos produtos de tratamento são apresentados no Quadro 2.10.

Através da análise deste quadro, pode-se verificar que os valores da porosidade livre às quarenta e oito horas diferem significativamente não só de pedra para pedra, mas também de ponto para ponto da mesma pedra, ou seja, de provete para provete, variando estes entre 4,85% e 10,30% no granito de duas micas de grão médio, e 4,04% e 4,48% nos provetes de microgranito de duas micas. Estes valores comprovam que na Igreja Matriz de Caminha se utilizaram pedras dos dois tipos de granito com diferentes graus de meteorização.

Conforme se pode verificar no Quadro 2.11, os valores da porosidade livre às quarenta e oito horas são da mesma ordem de grandeza dos determinados em diversos edifícios e monumentos construídos com granitos de duas micas.

Tipo de granito	Provete cilíndrico	N ₄₈ (%)
	IMC 1.1	7,08
	IMC 1.2	7,36
Γ	IMC 1.3	7,90
	IMC 1.4	8,81
	IMC 2.1	9,24
	IMC 2.2	9,87
	IMC 2.3	10,10
	IMC 2.4	10,30
Granito de duas micas	IMC 3.1	6,11
de grão médio	IMC 3.2	6,19
	IMC 4.1	5,25
	IMC 4.2	5,27
	IMC 4.3	5,10
	IMC 4.4	4,85
	IMC 5.1	5,25
	IMC 5.2	5,65
	IMC 5.3	5,82
	IMC 5.4	5,95
	IMC 6.1	4,24
	IMC 6.2	4,18
	IMC 6.3	4,13
	IMC 7.1	4,33
Γ	IMC 7.2	4,05
Microgranito de	IMC 7.3	4,04
duas micas	IMC 8.1	4,48
	IMC 8.2	4,27
	IMC 8.3	4,12
	IMC 9.1	4,37
	IMC 9.2	4,21
	IMC 9.3	4,07

Quadro 2.10 Valores da porosidade livre às quarenta e oito horas nos provetes cilíndricos de granito de duas micas de grão médio e de microgranito de duas micas.

A porosidade livre varia no sentido inverso da densidade aparente. Obtiveram-se boas correlações lineares entre os valores de d e de N_{48} determinados nos provetes do granito de duas micas de grão médio (d=-0,0376×N_{48}+2,6575 com coeficiente de correlação r²=0,9784 – Figura 2.16) e entre os valores de d e de N_{48} , considerando o conjunto dos trinta provetes de granito de duas micas de grão médio e de microgranito (d=-0,0359×N_{48}+2,6431 com r²=0,9754 – Figura 2.17). As duas expressões

são idênticas às calculadas por Begonha (2000) para o granito de duas micas de grão médio a grosseiro, utilizado no Mosteiro de São Miguel de Refojos (d=2,6870–0,0356×N₄₈ com r²=0,8820), por Begonha (2001) para o granito do Porto (d=2,6562–0,0309×N₄₈ com r²=0,9880), por Begonha (2002) para o granito de Vila Chã, usado no Mosteiro de São João de Tarouca (d=2,6679–0,0370×N₄₈ com r²=0,8570), por Begonha (2003a) para o granito de duas micas de grão fino a médio, aplicado na Igreja de São Pedro de Rates (d=2,6597–0,0324×N₄₈ com r²=0,9800) e por Begonha (2003a) para o granito de duas micas de grão Pedro de Rates (d=2,7135–0,0421×N₄₈ com r²=0,9450). Relativamente aos provetes de microgranito, há grande dispersão de resultados, uma vez que os valores dos dois parâmetros são bastante próximos, tendo-se obtido um coeficiente de correlação muito baixo (r²=0,0010).

Monumento ou edifício estudado	N ₄₈ (%)
Igreja Matriz de Caminha — granito de grão médio	4,85 – 10,30
Igreja Matriz de Caminha — microgranito	4,04 - 4,48
Convento de São Gonçalo de Amarante – granito de grão fino (Castro et al, 1991)	5,13 – 9,63
Anta Grande do Zambujeiro – granito de grão grosseiro (Pinto 1993)	2,90
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (Begonha, 2000)	4,61 – 8,53
Hospital de Santo António – pedras de granito do Porto afectadas por placas (Begonha, 2001)	3,38 – 7,46
Hospital de Santo António – pedras de granito do Porto afectadas por desagregação granular (Begonha, 2001)	3,96 – 4,29
Mosteiro de São João de Tarouca – granito de Vila Chã (Begonha, 2002)	6,83 – 8,58
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (Begonha, 2003a)	4,16 - 8,32
Igreja de São Pedro de Rates – granito de grão fino a médio (Begonha, 2003a)	4,77 – 8,59
Igreja Matriz de Espinho – granito de grão grosseiro (Begonha, 2003b)	2,12 - 4,00
Igreja Matriz de Espinho – granito de grão médio (Begonha, 2003b)	2,75 – 3,58
Convento de São Gonçalo de Amarante – granito de grão fino (Begonha, 2004b)	3,02 - 4,19
Antiga Alfândega de Vila do Conde – granito de (Ferreira, 2004)	2,88 - 8,48
Igreja de Santa Maria de Leça – granito do Porto (Moutinho, 2005)	3,00 – 3,66

Quadro 2.11	Valores limite da porosidade livre às quarenta e oito horas (N ₄₈) obtidos em granitos de
	duas micas empregues em monumentos e edifícios do Norte de Portugal.

Figura 2.16 Correlação linear obtida entre d e N₄₈ nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha.

Figura 2.17 Correlação linear obtida entre d e N₄₈ nos provetes de granito de duas micas de grão médio e de microgranito empregues na Igreja Matriz de Caminha.

Capítulo 2

2.4.2.2 Após a aplicação dos produtos de tratamento

No Quadro 2.12, mostram-se, de acordo com o tipo de tratamento, os valores da porosidade livre às quarenta e oito horas antes (N_{48}) e após (N_{48T}) a aplicação dos produtos de tratamento e as variações percentuais médias (ΔN_{48T}) para cada provete, para cada produto de tratamento, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

A variação percentual média de cada provete (Quadro 2.12, coluna 5) obteve-se pela seguinte equação:

$$\Delta N_{48T} = 100 \times (N_{48T} - N_{48}) / N_{48}.$$
(2.36)

A coluna 6 do mesmo quadro, apresenta a média das variações percentuais dos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento e o respectivo desvio padrão.

A coluna 7 mostra os resultados da média das variações percentuais dos provetes em que foram aplicados os hidrófugos (Sikagard ou Siliker), respectivo desvio padrão e os valores da média das variações percentuais dos provetes em que foram aplicados os produtos consolidantes (Tegovakon V ou S 41) e respectivo desvio padrão.

Pela análise deste quadro, pode-se verificar que as diminuições percentuais médias do valor da porosidade livre às quarenta e oito horas nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101 são muito semelhantes e respectivamente, de 12,8% e 10,8%, relativamente aos valores que apresentavam antes do tratamento.

Obtiveram-se diminuições médias percentuais muito semelhantes (5,6% e 4,0%), do valor da porosidade livre às quarenta e oito horas nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41 relativamente aos valores que apresentavam antes do tratamento.

Nos provetes tratados com produtos hidrófugos, verifica-se, em média, uma diminuição percentual da porosidade livre às quarenta e oito horas, de 12 % relativamente aos valores desta antes da aplicação dos respectivos produtos de tratamento. No caso dos provetes que estiveram sujeitos ao tratamento com produtos consolidantes, registou-se uma diminuição de 5 % na variação média percentual da

porosidade livre às quarenta e oito horas antes e após a aplicação dos consolidantes, valor menor do que o ocorrido com a aplicação de produtos hidrófugos.

Tratamento	Provete cilindrico	N ₄₈ (%)	N _{48T} (%)	ΔN _{48T} (%)	ΔN _{48T} (%)	ΔN _{48T} (%)
	IMC 1.1T	7,08	6,05	-14,55		
	IMC 1.4T	8,81	7,26	-17,59		
Cilve served	IMC 2.1T	9,24	8,01	-13,31	12.01.2.0	
Sikagard	IMC 4.2T	5,27	4,67	-11,39	-12,8±3,0	
	IMC 4.3T	5,10	4,59	-10,00		
	IMC 5.2T	5,65	5,09	-9,91		11 942 0
	IMC 1.2T	7,36	6,41	-12,91		-11,0±2,9
	IMC 1.3T	7,90	6,78	-14,18		
Cilikor	IMC 2.2T	9,87	8,78	-11,04	10.9+2.6	
Silikei	IMC 4.1T	5,25	4,68	-10,86	-10,8±2,0	
	IMC 4.4T	4,85	4,43	-8,66		
	IMC 5.1T	5,25	4,88	-7,05		
	IMC 2.3	10,10	8,99	-10,99		
	IMC 3.1	6,11	5,80	-5,07		
	IMC 5.3	5,82	5,72	-1,72		
	IMC 6.1T	4,24	4,00	-5,66		
Tegovakon V	IMC 6.3T	4,13	3,84	-7,02	-5,6±2,6	
	IMC 7.2T	4,05	3,84	-5,19		
	IMC 8.2T	4,27	4,00	-6,32		
	IMC 9.1T	4,37	4,20	-3,89		
	IMC 9.3T	4,07	3,90	-4,18		4 9 + 2 0
	IMC 2.4	10,30	9,27	-10,00		-4,8±2,9
	IMC 3.2	6,03	5,91	-1,99		
	IMC 5.4	5,95	5,94	-0,17		
	IMC 6.2T	4,18	3,94	-5,74		
S 41	IMC 7.1T	4,33	4,16	-3,93	-4,0±3,2	
	IMC 7.3T	4,04	3,76	-6,93		
	IMC 8.1T	4,48	4,29	-4,24		
	IMC 8.3T	4,12	4,10	-0,49		
	IMC 9.2T	4,21	4,11	-2,38		

Quadro 2.12 Valores de N₄₈ antes e após a aplicação dos produtos de tratamentos; variação percentual média de N₄₈ (Δ N_{48T}) para cada provete, produto de tratamento, conjunto dos dois produtos hidrófugos e conjunto dos dois produtos consolidantes.

Nas Figuras 2.18 e 2.19, apresentam-se, respectivamente, as variações da densidade aparente (d) com a porosidade livre às quarenta e oito horas nos provetes de granito de duas micas de grão médio

e nos provetes de duas micas de grão médio e de microgranito empregues na Igreja Matriz de Caminha.

Figura 2.18 Correlação linear obtida entre d e N₄₈ nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha.

Figura 2.19 Correlação linear obtida entre d e N₄₈ nos provetes de granito de duas micas de grão médio e de microgranito empregues na Igreja Matriz de Caminha.

Mais uma vez comprova-se que, a porosidade livre varia no sentido inverso da densidade aparente. Obtiveram-se, tal como nos resultados obtidos nos mesmos provetes sem qualquer tipo de tratamento, boas correlações lineares entre os valores de d e de N₄₈ determinados nos provetes do granito de duas micas de grão médio (d=-0,0445×N₄₈+2,6741 com coeficiente de correlação r^2 =0,9509 – Figura 2.18) e entre os valores de d e de N₄₈, considerando o conjunto dos trinta provetes de granito de duas micas de grão médio e de microgranito (d=-0,0430×N₄₈+2,6635 com r^2 =0,9569 – Figura 2.19). Relativamente aos provetes de microgranito, há grande dispersão de resultados, uma vez que os valores dos dois parâmetros são bastante próximos, tendo-se obtido um coeficiente de correlação muito baixo (r^2 =0,0448), embora um pouco superior ao encontrado para os provetes do mesmo tipo de granito sem aplicação de qualquer tratamento.

2.4.2.3 Após ensaio de envelhecimento acelerado

No Quadro 2.13, mostram-se, de acordo com o tipo de tratamento, os valores da porosidade livre às quarenta e oito horas antes (N_{48T}) e após (N_{48E}) a realização dos ensaios de envelhecimento e as variações percentuais médias (ΔN_{48E}) para cada provete, para cada produto de tratamento, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

A variação percentual do valor da porosidade livre às quarenta e oito horas de cada provete (Quadro 2.13, coluna 5) obteve-se pela seguinte equação:

$$\Delta N_{48E} = 100 \times (N_{48E} - N_{48T}) / N_{48T}$$
(2.37)

A coluna 6 do Quadro 2.13 apresenta a média das variações percentuais dos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento e o respectivo desvio padrão.

A coluna 7 do mesmo quadro mostra os resultados da média das variações percentuais dos provetes em que foram aplicados os hidrófugos (Sikagard ou Siliker), respectivo desvio padrão e os valores da média das variações percentuais dos provetes em que foram aplicados os produtos consolidantes (Tegovakon V ou S 41) e respectivo desvio padrão. Mais uma vez comprova-se que, a porosidade livre varia no sentido inverso da densidade aparente. Obtiveram-se, tal como nos resultados obtidos nos mesmos provetes sem qualquer tipo de tratamento, boas correlações lineares entre os valores de d e de N₄₈ determinados nos provetes do granito de duas micas de grão médio (d=-0,0445×N₄₈+2,6741 com coeficiente de correlação r^2 =0,9509 – Figura 2.18) e entre os valores de d e de N₄₈, considerando o conjunto dos trinta provetes de granito de duas micas de grão médio e de microgranito (d=-0,0430×N₄₈+2,6635 com r^2 =0,9569 – Figura 2.19). Relativamente aos provetes de microgranito, há grande dispersão de resultados, uma vez que os valores dos dois parâmetros são bastante próximos, tendo-se obtido um coeficiente de correlação muito baixo (r^2 =0,0448), embora um pouco superior ao encontrado para os provetes do mesmo tipo de granito sem aplicação de qualquer tratamento.

2.4.2.3 Após ensaio de envelhecimento acelerado

No Quadro 2.13, mostram-se, de acordo com o tipo de tratamento, os valores da porosidade livre às quarenta e oito horas antes (N_{48}) e após (N_{48T}) a realização dos ensaios de envelhecimento e as variações percentuais médias (ΔN_{48E}) para cada provete, para cada produto de tratamento, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

A variação percentual do valor da porosidade livre às quarenta e oito horas de cada provete (Quadro 2.13, coluna 5) obteve-se pela seguinte equação:

$$\Delta N_{48E} = 100 \times (N_{48E} - N_{48T}) / N_{48T}$$
(2.37)

A coluna 6 do Quadro 2.13 apresenta a média das variações percentuais dos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento e o respectivo desvio padrão.

A coluna 7 do mesmo quadro mostra os resultados da média das variações percentuais dos provetes em que foram aplicados os hidrófugos (Sikagard ou Siliker), respectivo desvio padrão e os valores da média das variações percentuais dos provetes em que foram aplicados os produtos consolidantes (Tegovakon V ou S 41) e respectivo desvio padrão.

Tratamento	Provete cilíndrico	N _{48T} (%)	N _{48E} (%)	ΔN _{48E} (%)	ΔN _{48E} (%)	ΔN _{48E} (%)
	IMC 1.1	6,05	6,21	2,64		
	IMC 1.4	7,26	7,15	-1,52		
	IMC 2.1	8,01	7,94	-0,87	1.2+1.0	
Sikayaru	IMC 4.2	4,67	4,76	1,93	1,2±1,9	
	IMC 4.3	4,59	4,69	2,18		
	IMC 5.2	5,09	5,24	2,95		10110
	IMC 1.2	6,41	6,46	0,78		1,0±1,9
	IMC 1.3	6,78	6,79	0,15		
Cilikon	IMC 2.2	8,78	8,62	-1,82	07121	
Sliker	IMC 4.1	4,68	4,89	4,49	0,7±2,1	
	IMC 4.4	4,43	4,45	0,45		
	IMC 5.1	4,88	4,89	0,20		
	IMC2.3	8,99	9,06	0,78		
	IMC3.1	5,80	5,85	0,86		
	IMC5.3	5,72	5,65	-1,22		
	IMC 6.1	4,00	3,99	-0,25		
Tegovakon V	IMC 6.3	3,84	3,92	2,08	-0,1±1,2	
	IMC 7.2	3,84	3,84	0,00		
	IMC 8.2	4,00	4,01	0,25		
	IMC 9.1	4,20	4,15	-1,19		
	IMC 9.3	3,90	3,83	-1,79		04122
	IMC2.4	9,27	8,75	-5,61		0,4±2,3
S 41	IMC3.2	5,91	6,02	1,86		
	IMC5.4	5,94	5,96	0,34		
	IMC 6.2	3,94	4,08	3,55		
	IMC 7.1	4,16	4,26	2,40	0,9±3,1	
	IMC 7.3	3,76	3,88	3,19]	
	IMC 8.1	4,29	4,47	4,20		
	IMC 8.3	4,10	4,03	-1,71]	
	IMC 9.2	4,11	4,11	0,00		

Quadro 2.13 Valores de N₄₈ antes e após a realização dos ensaios de envelhecimento; variação percentual média de N₄₈ (Δ N_{48E}) para cada provete, produto de tratamento, conjunto dos dois produtos hidrófugos e conjunto dos dois produtos consolidantes.

Os provetes tratados com o produto hidrófugo Sikagard 700 S e os provetes tratados com o produto hidrófugo HB Siliker S 101 registaram, após a realização dos ensaios de envelhecimento, pequenos aumentos percentuais médios do valor da porosidade livre às quarenta e oito horas, respectivamente de cerca de 1,2% e 0,7%, relativamente aos valores que apresentavam antes da execução dos ensaios de envelhecimento

No que respeita aos nove provetes tratados com o produto consolidante Tegovakon V e aos nove provetes tratados com o produto consolidante HMK S 41, registaram-se, após a realização dos ensaios de envelhecimento, respectivamente, uma pequeníssima diminuição média de cerca de 0,1% e um pequeno aumento percentual médio de 0,9% no valor da porosidade livre às quarenta e oito horas, relativamente aos resultados obtidos antes da execução dos referidos ensaios (após a aplicação dos produtos de tratamento).

Nos provetes tratados com produtos hidrófugos, verifica-se, em média, um pequeno aumento percentual da porosidade livre às quarenta e oito horas, de 1,0 % relativamente aos valores desta antes da aplicação dos respectivos produtos de tratamento. No caso dos provetes que estiveram sujeitos ao tratamento com produtos consolidantes, também se registou um aumento, mas muito pequeno, de cerca de 0,4 % na variação média percentual da porosidade livre às quarenta e oito horas antes e após a aplicação dos consolidantes.

2.4.3 Porometria

2.4.3.1 Antes da aplicação dos produtos de tratamento

Os valores obtidos no ensaio com o porosímetro de mercúrio, nomeadamente da porosidade total ao mercúrio (N_{Hg}), da microporosidade (N_{μ} - porosidade relativa aos poros com diâmetros inferiores a 7,5 μ m), da macroporosidade (N_{M} - porosidade relativa aos poros com diâmetros superiores a 7,5 μ m), da percentagem da microporosidade relativamente à porosidade total ao mercúrio (N_{μ}/N_{Hg}) e dos diâmetros de acesso das principais famílias de poros (d_{a}) nas partes das patelas não sujeitas a tratamento com o produto consolidante, são apresentados no Quadro 2.14. Em cada amostra, o primeiro valor de d_{a} corresponde à principal família de poros.

Conforme se pode verificar, no caso do granito de grão fino a médio, o valor de N_{Hg} varia entre 7,69% e 11,21% e, no microgranito, o valor de N_{Hg} varia entre 5,33% e 6,76%. Estes valores são semelhantes ou da mesma ordem de grandeza dos obtidos em granitos de duas micas empregues em diversos edifícios e monumentos do Norte de Portugal (Quadro 2.15).

Tipo de granito	Datala	Tipo de	Porosidade Total	Macrop	orosidade	ade Microporosidade		100×	Famílias
	Paleia	rede porosa	N _{Hg} (%)	N _м (%)	N _M /N _{Hg} (%)	Ν _μ (%)	Ν _μ /Ν _{Ηg} (%)	№ _µ / № _{нд} (%)	de poros d₁ (µm)
	IMC 2.1.1	Bimodal	9,42	3,67	39	5,75	61	61	9,17 1,34
o médic	IMC 2.2.1	Bimodal	11,21	4,26	38	6,95	62	62	16,20 1,01
Granito de grã	IMC 3.1.1	Trimodal	7,81	2,58	33	5,23	67	67	12,95 3,83 0,24
	IMC 3.2.1	Trimodal	7,69	2,69	35	5,00	65	65	12,58 2,97 0,19
Microgranito	IMC 6.1.1	Bimodal	6,76	2,50	37	4,26	63	63	4,86 9,03
	IMC 6.2.1	Bimodal	5,38	1,18	22	4,20	78	78	3,04 9,48
	IMC 7.1.1	Bimodal	6,21	1,68	27	4,53	73	73	2,45 8,74
	IMC 7.2.1	Bimodal	6,15	1,78	29	4,37	71	71	1,95 9,86
	IMC 8.1.1	Bimodal	5,33	1,39	26	3,94	74	74	2,38 9,58
	IMC 9.3.1	Bimodal	5,92	1,78	30	4,14	70	70	2,45 10,14

Quadro 2.14 Resultados obtidos com o porosímetro de mercúrio (patelas de granito de grão médio e de microgranito).

De acordo com o Quadro 2.14, nos dois tipos de granito estudados na Igreja de Nossa Senhora da Assunção, Matriz de Caminha, os valores da microporosidade N_{μ} são muito superiores aos da macroporosidade N_{M} . Assim, nas patelas em que não foi aplicado qualquer consolidante, a microporosidade representa em média $63,8\%\pm2,8\%$ (variando de 61% a 67%) da porosidade total ao mercúrio no granito de grão médio e $71,5\%\pm5,0\%$ (variando entre 63% e 78%) no microgranito. Valores idênticos foram obtidos em diversos tipos de granitos empregues em edifícios e monumentos do Norte de Portugal (Quadro 2.16).

O Quadro 2.14 mostra também que, em todas as amostras dos dois tipos de granitos utilizados na Igreja Matriz de Caminha, se verifica a existência de duas famílias de acesso aos poros (Figuras 2.20, 2.21 e 2.22). Denota-se porém que, nas amostras do granito de grão médio, a segunda família de poros não apresente um pico bem definido, mas um patamar com oscilações, abrangendo uma gama relativamente grande de dimensões dos acessos aos poros (Figuras 2.20 e 2.22).

A família principal de poros tem diâmetro de acesso compreendido entre 9,17 μ m e 16,20 μ m no granito de grão médio e entre 1,95 μ m e 4,86 μ m no microgranito. Na segunda família de poros, o diâmetro de acesso varia entre 1,01 μ m e 3,83 μ m para o granito de grão médio e 8,74 μ m e 10,14 μ m para o microgranito. Estes valores são idênticos aos resultados publicados para diversos granitos de duas micas aplicados em monumentos do Norte de Portugal (Quadro 2.17).

Quadro 2.15	Valores limite da porosidade total ao mercúrio (N _{Hg}) obtidos em granitos de duas micas
	empregues em monumentos e edifícios do Norte de Portugal.

Monumento ou edifício estudado	N _{Нg} (%)			
Igreja Matriz de Caminha – granito de grão médio				
Igreja Matriz de Caminha – microgranito				
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (Begonha, 2000)	5,95 – 8,46			
Hospital de Santo António – placa de granito do Porto (Begonha, 2001)	5,85			
Mosteiro de São João de Tarouca – granito de Vila Chã (Begonha, 2002)				
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (Begonha, 2003a)				
Igreja de São Pedro de Rates – granito de grão fino a médio (Begonha, 2003a)	6,83 – 9,90			
Igreja Matriz de Espinho – granito de grão grosseiro (Begonha, 2003b)	3,36 – 4,91			
Igreja Matriz de Espinho – granito de grão médio (Begonha, 2003b)	3,87			
Convento de São Gonçalo de Amarante – granito de grão fino (Begonha, 2004b)	4,42 - 4,64			
Igreja de Santa Maria de Leça do Mosteiro de Leça do Balio – granito do Porto (Moutinho, 2005)	4,20 - 4,43			

Quadro 2.16 Valores limite da razão entre a microporosidade (N_{μ}) e a porosidade total ao mercúrio (N_{Hg}) obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.

Monumento ou edifício estudado	100×Nµ/N _{Hg} (%)
Igreja Matriz de Caminha — granito de grão médio	61 – 67
Igreja Matriz de Caminha — microgranito	63 – 78
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (Begonha, 2000)	81 – 96
Hospital de Santo António – placa de granito do Porto (Begonha, 2001)	75
Mosteiro de São João de Tarouca – granito de Vila Chã (Begonha, 2002)	80
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (Begonha, 2003a)	72 – 80
Igreja de São Pedro de Rates – granito de grão fino a médio (Begonha, 2003a)	67 – 73
Igreja Matriz de Espinho – granito de grão grosseiro (Begonha, 2003b)	64 – 65
Igreja Matriz de Espinho – granito de grão médio (Begonha, 2003b)	79 – 80
Convento de São Gonçalo de Amarante – granito de grão fino (Begonha, 2004b)	66 – 78
Igreja de Santa Maria de Leça do Mosteiro de Leça do Balio – granito do Porto (Moutinho, 2005)	49 – 56

Figura 2.20 Distribuição dos diâmetros de acesso aos poros na patela IMC 2.1.1 e IMC 2.2.1 de granito de grão médio empregue na Igreja Matriz de Caminha.

Figura 2.21 Distribuição dos diâmetros de acesso aos poros na patela IMC 3.2.1 de granito de grão médio empregue na Igreja Matriz de Caminha.

Figura 2.22 Distribuição dos diâmetros de acesso aos poros na patela IMC 6.1.1 de microgranito empregue na Igreja Matriz de Caminha.

Quadro 2.17	Valores limite dos diâmetros d	le acesso das principa	is famílias de p	oros de granitos de
	duas micas usados em monu	umentos e edifícios do	Norte de Portu	ıgal.

Granito meteorizado, monumento ou edifício estudado	Família principal d₁ (µm)	Família secundária d₄ (µm)
Igreja Matriz de Caminha – granito de grão médio	9,2 – 16,2	1,0 - 3,8
Igreja Matriz de Caminha – microgranito	2,0 - 4,9	8,7 - 10,1
Granito do Porto meteorizado (Begonha et al, 1994, Begonha, 2001)	0,25 – 0,65	
Granito de Braga meteorizado (Alves, 1997)	0,4	
Granito de Gondizalves meteorizado (Alves, 1997)	0,4	
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (Begonha, 2000)	1,0 - 3,0	
Hospital de Santo António – placa de granito do Porto (Begonha, 2001)	5,5	
Mosteiro de São João de Tarouca – granito de Vila Chã (Begonha, 2002)	1,5	
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (Begonha, 2003a)	0,9 - 1,9	9,0 – 9,3
Igreja de São Pedro de Rates – granito de grão fino a médio (Begonha, 2003a)	1,9 - 4,0	8,6 - 9,4
Igreja Matriz de Espinho – granito de grão grosseiro (Begonha, 2003b)	0,8 – 0,9	14,2 - 14,9
Igreja Matriz de Espinho – granito de grão médio (Begonha, 2003b)	0,8 - 1,9	9,4
Convento de São Gonçalo de Amarante – granito de grão fino (Begonha, 2004b)	0,3 - 1,8	8,7 – 9,3
Igreja de Santa Maria de Leça do Mosteiro de Leça do Balio – granito do Porto (Moutinho, 2005)	10,7 - 18,5	1,6 – 2,8
Capítulo 2

2.4.3.2 Depois da aplicação dos produtos de tratamento

No Quadro 2.18, apresentam-se os valores obtidos no ensaio com o porosímetro de mercúrio nas partes das patelas sujeitas a tratamento com os consolidantes Tegovakon V ou HMK S41, nomeadamente da porosidade total ao mercúrio (N_{HgT}), da microporosidade ($N_{\mu T}$ - porosidade relativa aos poros com diâmetros inferiores a 7,5 µm), da macroporosidade (N_{MT} - porosidade relativa aos poros com diâmetros superiores a 7,5 µm), da percentagem da macroporosidade relativamente à porosidade total ao mercúrio ($100 \times N_{MT}/N_{HgT}$), da percentagem da microporosidade relativamente à porosidade total ao mercúrio ($100 \times N_{MT}/N_{HgT}$), e dos diâmetros de acesso das principais famílias de poros (d_{aT}). Em cada amostra, o primeiro valor de d_{aT} corresponde à principal família de poros.

Tipo de	Patela	Tipo de rede	Porosidade Total	Porosidade Total Macroporosidade		Microp	Famílias de poros	
granito		porosa	N _{нgт} (%)	N _{мт} (%)	100 X N _{мт} /N _{нgт} (%)	Ν _{μτ} (%)	100 X N _{µT} /N _{HgT} (%)	d _{ат} (µm)
to de médio	IMC 3.1.2	Bimodal	6,07	2,31	38	3,76	62	11,27 3,22
Granil grão n	IMC 3.2.2	Bimodal	5,54	1,99	36	3,54	64	11,88 0,79
	IMC 6.1.2	Unimodal	4,43	1,33	30	3,10	70	2,51
	IMC 6.2.2	Unimodal	4,40	0,97	22	3,43	78	1,50
granito	IMC 7.1.2	Unimodal	4,64	1,30	28	3,34	72	2,80
Microg	IMC 7.2.2	Unimodal	5,39	2,10	39	3,29	61	2,59
	IMC 8.1.2	Unimodal	5,41	2,00	37	3,41	63	2,60
	IMC 9.3.2	Unimodal	4,32	1,12	26	3,20	74	2,22

Quadro 2.18 Resultados obtidos com o porosímetro de mercúrio nas patelas sujeitas a tratamento.

Nas partes das patelas tratadas com consolidantes dos dois tipos de granito estudados na Igreja Matriz de Caminha, o valor de N_{HgT} varia entre 5,54% e 6,07%, no que diz respeito ao granito de grão médio, estando compreendido entre 4,32% e 5,41% no microgranito. A microporosidade $N_{\mu T}$ domina sempre, em qualquer patela, em relação à macroporosidade N_{MT} , variando de 62% a 64% de N_{HgT} no granito de grão médio e entre 61% e 78% do valor de N_{HgT} no microgranito. O quadro anterior mostra ainda que, as amostras consolidadas do granito de grão médio apresentam duas famílias de poros, enquanto que as de microgranito consolidado contêm apenas uma família principal de poros. Denota-se também que, antes da aplicação do produto consolidante, o granito de grão médio apresentava uma distribuição dos raios de acesso aos poros trimodal, passando a bimodal, depois das amostras se encontrarem consolidadas e no microgranito verifica-se uma variação da distribuição dos raios de acesso aos poros de bimodal.

No granito de grão médio, a família principal de poros tem diâmetro de acesso compreendido entre 11,27 μ m e 11,88 μ m e a segunda família de poros diâmetro de acesso entre 0,79 μ m e 3,22 μ m. No que concerne ao microgranito, a família principal de poros tem diâmetro de acesso compreendido entre 1,50 μ m e 2,80 μ m.

No Quadro 2.19, mostram-se, conforme o tipo de granito e de tratamento, os valores da porosidade total ao mercúrio antes (N_{Hg}) e após (N_{HgT}) a aplicação dos consolidantes, bem como as variações percentuais médias (ΔN_{HgT}) para cada patela, para cada produto de tratamento consolidante e para os produtos consolidantes na sua globalidade.

Tipo de granito	Tratamento	Patela	N _{Нg} (%)	N _{ндт} (%)	ΔΝ _{ΗgT} (%)	ΔΝ _{ΗgT} (%)	ΔΝ _{ΗgT} (%)
to de médio	Tegovakon V	IMC 3.1	7,81	6,07	-22,3	-22,3	-25,2±4,0
Granii grão r	S 41	IMC 3.2	7,69	5,54	-28,0	-28,0	
Microgranito		IMC6.1	6,76	4,43	-34,5		
	Tegovakon V	IMC 7.1	6,21	4,64	-25,3	-24,8±9,2	-23,5±8,5
		IMC 7.2	6,15	5,39	-12,4		
		IMC 9.3	5,92	4,32	-27,0		
	C 41	IMC 6.2	5,38	4,40	-18,2	-18,2	
	S 41	IMC 8.1	5,33	5,41	+1,5		

Quadro 2.19 Valores de N_{Hg} antes e depois da aplicação dos tratamentos; variação percentual média de N_{Hg} (Δ N_{HgT}) para cada patela, consolidante e conjunto dos dois consolidantes.

O valor da porosidade total ao mercúrio decresce nas partes das patelas consolidadas relativamente às partes das mesmas sem qualquer tratamento.

67

A variação percentual de cada patela (Quadro 2.19, coluna 6) obteve-se pela seguinte equação:

$$\Delta N_{HgT} = 100 \times (N_{HgT} - N_{Hg}) / N_{Hg}$$
(2.38)

A coluna 7 do mesmo quadro apresenta, para cada tipo de granito e produto de tratamento aplicado as variações percentuais médias do valor da porosidade total ao mercúrio e o respectivo desvio padrão. Neste cálculo, não se contabilizou a patela IMC 8.1 (tratada com o consolidante S41) devido ao facto do resultado obtido em IMC 8.1.2 não parecer estar correcto.

A coluna 8 do mesmo quadro mostra os resultados das variações médias percentuais e respectivo desvio padrão, obtidas para o granito de grão médio e para o microgranito, considerando os dois consolidantes (Tegovakon V e S 41). Neste cálculo também se excluiram os valores obtidos da patela IMC 8.1 pelo motivo acima referido.

No granito de grão médio, as diminuições percentuais do valor da porosidade total ao mercúrio na patela tratada com o produto consolidante Tegovakon V e na patela tratada com o produto consolidante HMK S 41 são muito semelhantes, sendo respectivamente de -22% e de -28% relativamente aos valores que apresentavam antes do tratamento.

No caso do microgranito, a diminuição percentual média do valor da porosidade total ao mercúrio nas 4 patelas tratadas com o produto consolidante Tegovakon V foi de -25% (variando de -12,4% a - 34,5%) e na patela tratada com o produto consolidante HMK S 41 de -18%, relativamente aos valores que apresentavam antes do tratamento.

Begonha (2003a) obteve diminuições percentuais do valor da porosidade total ao mercúrio idênticas nos dois tipos de granitos de duas micas empregues em São Pedro de Rates, antes e após a aplicação do consolidante e hidrófugo Tegovakon T e do consolidante MMK S 41 (Quadro 2.20).

De acordo com o tipo de granito e de tratamento, o Quadro 2.21 apresenta os valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio antes $(100 \times N_{\mu}/N_{Hg})$ e após $(100 \times N_{\mu T}/N_{HgT})$ a aplicação dos produtos consolidantes, bem como as variações percentuais médias $(\Delta(N_{\mu}/N_{Hg})_T)$ para cada patela, cada produto individualmente e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

Tipo de Granito de São Pedro de Rates / Tratamento	Valores limites da variação média (%)
Granito de grão médio a grosseiro / Tegovakon T	-18,26 a -28,66
Granito de grão médio a grosseiro / HMK S 41	-8,32 a -19,86
Granito de grão fino a médio / Tegovakon T	-1,46 a -36,06
Granito de grão fino a médio / HMK S 41	-19,43 a -26,35

Quadro 2.20 Valores limite das variações percentuais médias do valor da porosidade total ao mercúrio obtidos em granitos de duas micas empregues em São Pedro de Rates (Begonha, 2003a).

Quadro 2.21 Valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio antes e depois da aplicação dos tratamentos; variação percentual média da percentagem da microporosidade relativamente à porosidade total ao mercúrio para cada consolidante e para o conjunto dos dois consolidantes.

Tipo de granito	Tratamento	Patela	100×N _µ /N _{Hg} (%)	100×N _{µT} /N _{нgT} (%)	Δ(N _µ /N _{Hg}) _T (%)	Δ(N _µ /N _{Hg}) _T (%)	Δ(N _µ /N _{Hg}) _T (%)
ອີ Oip oip ມີ ເຊິ່ມ ເຊີ່ມ ເຊິ່ມ ເຊິ່ມ ເຊິ່ມ ເຊິ່ມ ເຊີ່ ເຊີ່ມ ເ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ เ เ เ เ	Tegovakon V	IMC 3.1	67	62	-7,5	-7,5	-4 5+4 2
	S 41	IMC 3.2	65	64	-1,5	-1,5	1,5± 1,2
Microgranito		IMC 6.1	63	70	11,1		
	Tegovakon V	IMC 7.1	73	72	-1,4	0,3±10,9	2 2 4 10 5
		IMC 7.2	71	61	-14,1		
		IMC 9.3	70	74	5,7		-2,3±10,5
	C 41	IMC 6.2	78	78	0,0	741105	
	5 41	IMC 8.1	74	63	-14,9	-/,4±10,5	

A variação percentual da microporosidade em relação à porosidade total ao mercúrio, em cada patela, após a consolidação, relativamente à mesma percentagem antes da aplicação do tratamento (coluna 6 do Quadro 2.21) obteve-se através da seguinte equação:

$$\Delta(N_{\mu}/N_{Hg})_{T} = 100 \times (N_{\mu T}/N_{HgT} - N_{\mu}/N_{Hg})/(N_{\mu}/N_{Hg}).$$
(2.39)

A coluna 7 apresenta, para cada tipo de granito e produto consolidante, a média das variações percentuais das patelas e respectivo desvio padrão.

No granito de grão médio, as diminuições percentuais do valor da percentagem da microporosidade em relação à porosidade total ao mercúrio na patela tratada com o produto consolidante Tegovakon V e na patela tratada com o produto consolidante HMK S 41 relativamente aos valores que apresentavam antes do tratamento, são semelhantes, sendo respectivamente de -7,5% e de -1,5%.

No diz respeito às patelas de microgranito verifica-se uma grande dispersão de resultados quer nas 4 patelas tratadas com o produto consolidante Tegovakon V (de -14,1% a 11,1%), quer nas 2 patelas tratadas com o produto consolidante HMK S 41 (de -14,9% a 0,0%).

A coluna 8 do mesmo quadro mostra os resultados das variações percentuais médias obtidas e respectivo desvio padrão para o granito de grão médio e para o microgranito, considerando os dois consolidantes (Tegovakon V e S 41).

Conforme se pode verificar no quadro a seguir apresentado (Quadro 2.22), Begonha (2003a) obteve igualmente grande dispersão de resultados nas variações do valor da percentagem da microporosidade relativamente à porosidade total ao mercúrio nos dois tipos de granitos de duas micas empregues em São Pedro de Rates, antes e após a aplicação do consolidante e hidrófugo Tegovakon T e do consolidante MMK S 41.

Quadro 2.22 Valores limite das variações do valor da percentagem da microporosidade relativamente à porosidade total ao mercúrio $(100 \times (N_{\mu T}/N_{HgT} - N_{\mu}/N_{Hg})/N_{\mu}/N_{Hg})$ obtidos em granitos de duas micas empregues em São Pedro de Rates (Begonha, 2003a).

Tipo de granito usado em São Pedro de Rates / Tratamento	Δ(N _µ /N _{Hg})τ (%) Valores limites
Granito de grão médio a grosseiro / Tegovakon T	-16,9 a -7,0
Granito de grão médio a grosseiro / HMK S 41	-9,8 a 6,3
Granito de grão fino a médio / Tegovakon T	-18,5 a 18,8
Granito de grão fino a médio / HMK S 41	-6,4 a 7,6

O Quadro 2.23 mostra os valores dos diâmetros de acesso das famílias de poros das partes das patelas não consolidadas e das partes das patelas consolidadas.

As Figuras 2.23 a 2.26 apresentam a distribuição dos diâmetros de acesso aos poros das patelas IMC 3.1 e IMC 3.2 de granito de grão médio e IMC 6.1 e IMC 6.2 de microgranito empregues na Igreja Matriz de Caminha, antes e após a aplicação dos consolidantes (Tegovakon V e S41).

Tipo de granito	Tratamento	Patela	Famílias de poros antes do tratamento d _a (μm)	Famílias de poros depois do tratamento d _{aτ} (μm)
Granito de grão médio	Tegovakon V	IMC 3.1	12,95 3,83 0,24	11,27 3,22
	S 41	IMC 3.2	12,58 2,97 0,19	11,88 0,79
	Tegovakon V	IMC 6.1	4,86 9,03	2,51
		IMC 7.1	2,45 8,74	2,80
Missaansita		IMC 7.2	1,95 9,86	2,59
Microgranito		IMC 9.3	2,45 10,14	2,22
	C 41	IMC 6.2	3,04 9,48	1,50
	S 41	IMC 8.1	2,38 9,58	2,60

Quadro 2.23 Diâmetros de acesso das famílias de poros dos dois granitos antes e depois da aplicação dos dois consolidantes.

Figura 2.23 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.1 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.1.1) e depois (IMC 3.1.2) da aplicação do consolidante Tegovakon V.

Figura 2.24 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.2 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.2.1) e depois (IMC 3.2.2) da aplicação do consolidante HMK S 41.

Figura 2.25 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.1 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.1.1) e depois (IMC 6.1.2) da aplicação do consolidante Tegovakon V.

Figura 2.26 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.2 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.2.1) e depois (IMC 6.2.2) da aplicação do consolidante HMK S 41.

Nas duas amostras de granito de grão médio, a aplicação de qualquer dos dois consolidantes conduziu ao preenchimento da terceira família de poros (0,24 µm e 0,19 µm, respectivamente das amostras IMC 3.1.1 e IMC 3.2.1) pelos dois produtos de tratamento, pelo que as amostras consolidadas apresentam apenas duas e não três famílias de poros. A ordem de importância das duas principais famílias não é alterada com a aplicação dos dois consolidantes. Nas duas famílias principais, há uma diminuição do diâmetro de acesso aos poros após o processo de consolidação, devido ao preenchimento parcial das fissuras por qualquer dos dois produtos de tratamento.

Nas amostras de microgranito, a aplicação de qualquer dos dois consolidantes levou a que a rede porosa passasse de bimodal, nas partes não tratadas das patelas, a essencialmente unimodal, nas partes consolidadas das mesmas patelas. A principal família de poros, existente antes do processo de consolidação, permanece após o tratamento com qualquer dos dois consolidantes. Na família principal de poros registam-se, em qualquer dos dois consolidantes, quer aumentos quer diminuições no diâmetro de acesso aos poros depois do tratamento de consolidação (Quadro 2.23).

73

2.4.3.3 Após ensaio de envelhecimento acelerado

No Quadro 2.24, apresentam-se os valores obtidos no ensaio com o porosímetro de mercúrio nas partes das patelas que foram submetidas aos ensaios de envelhecimento depois de consolidadas com Tegovakon V ou com HMK S 41, nomeadamente da porosidade total ao mercúrio (N_{HgE}), da microporosidade ($N_{\mu E}$), da macroporosidade (N_{ME}), da percentagem da macroporosidade relativamente à porosidade total ao mercúrio ($100 \times N_{ME}/N_{HgE}$), da percentagem da microporosidade relativamente à porosidade total ao mercúrio ($100 \times N_{\mu E}/N_{HgE}$), e dos diâmetros de acesso das principais famílias de poros (d_{aE}). Em cada amostra, o primeiro valor de d_{aE} corresponde à principal família de poros.

O valor de N_{HgE} varia entre 6,19% e 6,42% no granito de grão médio e entre 4,16% e 6,07% no microgranito. A microporosidade N_{µE} domina sempre em relação à macroporosidade N_{ME}, representando em média 58,5%±3,5% (variando de 56% a 61%) de N_{HgE} no granito de grão médio e 70,5%±6,2% (variando entre 61% e 76%) do valor de N_{HgE} no microgranito.

O mesmo quadro mostra ainda que, na Igreja Matriz de Caminha, as amostras consolidadas e envelhecidas do granito de grão médio apresentam três famílias de poros, enquanto que as de microgranito consolidado e envelhecido contêm apenas uma família principal de poros, à excepção da amostra IMC 6.2.3 com duas famílias principais de poros.

No granito de grão médio, a família principal de poros tem diâmetro de acesso compreendido entre 9,18 µm e 15,06 µm e a segunda família de poros diâmetro de acesso entre 1,01 µm e 3,74 µm. No que concerne ao microgranito, a família principal de poros tem diâmetro de acesso compreendido entre 1,94 µm e 3,26 µm.

No Quadro 2.25, mostram-se, de acordo com o tipo de granito e de tratamento aplicado, os valores da porosidade total ao mercúrio antes (N_{HgT}) e após (N_{HgE}) a realização dos ensaios de envelhecimento, e as variações percentuais médias (ΔN_{HgE}) para cada patela, para cada produto consolidante e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

A coluna 7 do Quadro 2.25 apresenta, para cada tipo de granito e tratamento, a média das variações percentuais da porosidade total ao mercúrio e o respectivo desvio padrão após a realização dos ensaios de envelhecimento das amostras em que foi aplicado cada um dos dois produtos consolidantes, relativamente aos valores determinados antes da realização dos referidos ensaios

Tipo de		Tipo de	Porosidade Total Macroporosidade			Micropo	Famílias de poros	
granito	Patela	rede porosa	N _{HgE} (%)	№ (%)	100 X N _{ме} /N _{нge} (%)	Ν _{με} (%)	100 X N _{µE} /N _{HgE} (%)	d _{aE} (µm)
de grão dio	IMC 3.1.3	Bimodal	6,19	2,72	44	3,47	56	9,18 – 12,95 3,74 0,28
Granito c méc	IMC 3.2.3	Bimodal	6,42	2,50	39	3,92	61	15,06 1,01 – 3,06 0,19
	IMC 6.1.3	Unimodal	4,50	1,17	26	3,33	74	3,06
	IMC 6.2.3	Unimodal	6,07	2,37	39	3,70	61	2,17 9,45
granito	IMC 7.1.3	Unimodal	5,08	1,22	24	3,86	76	1,94
Microg	IMC 7.2.3	Unimodal	4,95	1,19	24	3,76	76	3,26
	IMC 8.1.3	Unimodal	6,00	2,10	35	3,90	65	2,37
	IMC 9.3.3	Unimodal	4,16	1,21	29	2,95	71	2,65

Quadro 2.24 Resultados obtidos com o porosímetro de mercúrio.

Quadro 2.25 Valores de N_{Hg} antes e depois da realização dos ensaios de envelhecimento; variação percentual média de N_{Hg} (Δ N_{HgE}) para cada patela, produto consolidante, conjunto dos dois consolidantes.

Tipo de granito	Tratamento	Patela	N _{НgT} (%)	N _{НgE} (%)	ΔN _{HgE} (%)	ΔN _{HgE} (%)	ΔN _{HgE} (%)
Granito de grão médio	Tegovakon V	IMC 3.1	6,07	6,19	2,0	2,0	0.0+0.8
	S 41	IMC 3.2	5,54	6,42	15,9	15,9	9,0±9,8
Microgranito		IMC6.1	4,43	4,50	1,6		8,0±16,4
	Tegovakon V	IMC 7.1	4,64	5,08	9,5	-0,2±7,6	
		IMC 7.2	5,39	4,95	-8,2		
		IMC 9.3	4,32	4,16	-3,7		
	S 41	IMC 6.2	4,40	6,07	38,0	24.4 + 10.2	
		IMC 8.1	5,41	6,00	10,9	24,4±19,2	

O valor da porosidade total ao mercúrio das patelas consolidadas aumenta após os ensaios de envelhecimento, à excepção das patelas IMC 7.2 e IMC 9.3 em que se registam pequenas diminuições. A variação percentual do valor da porosidade total ao mercúrio de cada patela (coluna 6 do Quadro 2.25) obteve-se pela seguinte equação:

$$\Delta N_{HgE} = 100 \times (N_{HgE} - N_{HgT}) / N_{HgT}$$
(2.40)

A coluna 8 do mesmo quadro mostra os resultados da média das variações percentuais da porosidade total ao mercúrio e o respectivo desvio padrão, após a execução dos ensaios de envelhecimento, obtidas para o granito de grão médio e para o microgranito, considerando os dois consolidantes (Tegovakon V e S 41).

No granito de grão médio, após os ensaios de envelhecimento, os valores da porosidade total ao mercúrio, na patela tratada com o produto consolidante Tegovakon V e na patela tratada com o produto consolidante HMK S 41, foram respectivamente superiores em 2% e em 16% relativamente aos valores que apresentavam antes do envelhecimento.

No que concerne ao microgranito, o valor médio da porosidade total ao mercúrio nas quatro patelas tratadas com o produto consolidante Tegovakon V, depois da realização dos ensaios de envelhecimento, é quase igual ao valor médio obtido antes da execução dos mesmos ensaios, pelo que a variação média é praticamente nula (-0,2%±7,6%). No entanto, a dispersão dos resultados é grande, variando de -8,2% a 9,5%. Nas duas patelas tratadas com o produto consolidante HMK S 41, verificou-se um aumento médio de 24% após o envelhecimento relativamente aos valores calculados antes do envelhecimento.

No Quadro 2.26, mostram-se, conforme o tipo de granito e de tratamento, os valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio antes $(100 \times N_{\mu T}/N_{HgT})$ e após $(100 \times N_{\mu E}/N_{HgE})$ a realização dos ensaios de envelhecimento, bem como as variações percentuais médias $(\Delta(N_{\mu}/N_{Hg})_{E})$ para cada patela, para cada produto individualmente e para os produtos consolidantes na sua globalidade (Tegovakon V e S41).

Tipo de granito	Tratamento	Patela	100×N _{µT} /N _{НgT} (%)	100×N _{µE} /N _{HgE} (%)	Δ(N _µ /N _{Hg}) _E (%)	Δ(N _µ /N _{Hg}) _E (%)	Δ(N _µ /N _{Hg}) _E (%)
ito de médio	Tegovakon V	IMC 3.1	62	56	-9,7	-9,7	-7 2+3 5
Grani Grani S 41	S 41	IMC 3.2	64	61	-4,7	-4,7	7,2±3,3
		IMC 6.1	70	74	5,7		2,2±15,1
	Tegovakon V	IMC 7.1	72	76	5,6	8,0±12,0	
Iranito		IMC 7.2	61	76	24,6		
Microg		IMC 9.3	74	71	-4,1		
	6.41	IMC 6.2	78	61	-21,8	-9,3±17,7	
	5 41	IMC 8.1	63	65	3,2		

Quadro 2.26 Valores da percentagem da microporosidade relativamente à porosidade total ao mercúrio antes e depois dos ensaios de envelhecimento; variação percentual média da razão entre a microporosidade e a porosidade total ao mercúrio ($\Delta(N_{\mu}/N_{Hg})_E)$, para cada patela, consolidante e para o conjunto dos dois consolidantes.

A variação percentual da microporosidade em relação à porosidade total ao mercúrio ($\Delta(N_{\mu}/N_{Hg})_E$), em cada patela, após os ensaios de envelhecimento, relativamente à mesma percentagem antes da realização dos mesmos (coluna 6 do Quadro 3.22) obteve-se através da seguinte expressão:

$$\Delta(N_{\mu}/N_{Hg})_{E} = 100 \times (N_{\mu E}/N_{HgE} - N_{\mu T}/N_{HgT})/(N_{\mu T}/N_{HgT}).$$
(2.41)

A coluna 7 apresenta, para cada tipo de granito e tratamento, a média das variações percentuais da razão entre a microporosidade e a porosidade total ao mercúrio das patelas e o respectivo desvio padrão, após e antes da execução dos ensaios de envelhecimento.

A coluna 8 do Quadro 2.26 mostra os resultados da média das variações percentuais da razão entre a microporosidade e a porosidade total ao mercúrio e o respectivo desvio padrão, após a execução dos ensaios de envelhecimento, obtidas para o granito de grão médio e para o microgranito, considerando em conjunto os dois consolidantes (Tegovakon V e S 41).

Depois dos ensaios de envelhecimento, no granito de grão médio, as diminuições percentuais do valor da razão entre a microporosidade e a porosidade total ao mercúrio na patela tratada com o produto consolidante Tegovakon V e na patela tratada com o produto consolidante HMK S 41 são respectivamente de -9,7% e de -4,7% relativamente aos valores que apresentavam antes do envelhecimento.

No que concerne ao microgranito e depois dos ensaios de envelhecimento, as variações percentuais da razão entre a microporosidade e a porosidade total ao mercúrio apresentam grande dispersão de resultados quer nas quatro patelas tratadas com o produto consolidante Tegovakon V (de -4,1% a 24,6%) quer nas duas patelas tratadas com o produto consolidante HMK S 41 (de -21,8% a 3,2%), relativamente aos valores que apresentavam antes do envelhecimento.

O Quadro 2.27 mostra os valores dos diâmetros de acesso das famílias de poros das partes das patelas não consolidadas e não envelhecidas, das partes das patelas consolidadas, mas não envelhecidas, e das partes das patelas sujeitas a consolidação e a envelhecimento, obtidos respectivamente dos Quadros 2.14, 2.18 e 2.24.

Quadro 2.27 Diâmetros de acesso das famílias de poros dos dois granitos antes e depois da aplicação dos dois consolidantes e após os ensaios de envelhecimento.

Tipo de granito	Tratamento	Patela	Famílias de poros antes do tratamento d _a (μm)	Famílias de poros depois do tratamento d _{aτ} (μm)	Famílias de poros depois do tratamento e do envelhecimento d _{aE} (µm)
			12,95	11,27	9,18 - 12,95
Granito de	Tegovakon V	IMC 3.1	3,83 0,24	3,22	3,74 0,28
grão médio	S 41	IMC 3.2	12,58 2,97 0,19	11,88 0,79	15,06 1,01 - 3,06 0,19
		IMC 6.1	4,86 9,03	2,51	3,06
		IMC 7.1	2,45 8,74	2,80	1,94
Micrograpito		IMC 7.2	1,95 9,86	2,59	3,26
Microgranito		IMC 9.3	2,45 10,14	2,22	2,65
	C 41	IMC 6.2	3,04 9,48	1,50	2,17 9,45
	S 41	IMC 8.1	2,38 9,58	2,60	2,37

Através da análise do Quadro 2.27, verifica-se que nas duas amostras de granito de grão médio, após os ensaios de envelhecimento e no que concerne à família principal de poros, não há variação significativa no diâmetro de acesso aos poros da patela IMC 3.1, tratada com o consolidante

Tegovakon V, constatando-se um aumento significativo no diâmetro de acesso da patela IMC 3.2 consolidada com HMK S 41. Observou-se ainda um aumento no diâmetro dos raios de acesso da segunda família principal de poros nestas duas patelas. A terceira família de poros, presente nas amostras sem tratamento (0,24 μ m em IMC 3.1.1 e 0,19 μ m em IMC 3.2.1) e que com o aplicação de qualquer dos dois consolidantes conduziu ao seu preenchimento, reaparece após os ensaios de envelhecimento (0,28 μ m em IMC 3.1.3 e 0,19 μ m em IMC 3.2.3). A ordem de importância das duas principais famílias não é alterada nem com a aplicação dos dois consolidantes nem com os ensaios de envelhecimento.

Nas amostras de microgranito, a principal família de poros, existente antes do processo de consolidação, permanece após o tratamento com qualquer dos dois consolidantes e também depois dos ensaios de envelhecimento. Na família principal de poros, registaram-se, em qualquer dos dois consolidantes e depois dos ensaios de envelhecimento, quer aumentos quer diminuições nos valores dos diâmetros de acesso, quando comparados com os obtidos após a consolidação. A realização dos ensaios de envelhecimento não conduziu ao aparecimento de uma nova família principal de poros, à excepção da patela IMC 6.2, em que a rede porosa passou de unimodal, após a aplicação do consolidante HMK S 41, a bimodal. Uma nova família secundária de poros surgiu com o envelhecimento nas patelas IMC 6.2, IMC 7.1, IMC 7.2 e IMC 8.1, tendo diâmetro de acesso compreendido entre 0,29 µm e 0,77 µm. Nas patelas IMC 6.1 e IMC 9.3, esta família já aparecia depois da consolidação, mas aumenta um pouco ou mantém a sua importância após os ensaios de envelhecimento.

As Figuras 2.27 a 2.34 apresentam a distribuição dos diâmetros de acesso aos poros das patelas IMC 3.1 e IMC 3.2 de granito de grão médio e IMC 6.1, IMC 6.2, IMC 7.1, IMC 7.2, IMC 8.1 e IMC 9.3 de microgranito empregues na Igreja Matriz de Caminha, antes e após a aplicação dos consolidantes e após a consolidação e a realização dos ensaios de envelhecimento.

79

Figura 2.27 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.1 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.1.1) e depois (IMC 3.1.2) da aplicação do consolidante Tegovakon V e após o envelhecimento (IMC 3.1.3).

Figura 2.28 Distribuição dos diâmetros de acesso aos poros da patela IMC 3.2 de granito de grão médio empregue na Igreja Matriz de Caminha antes (IMC 3.2.1) e depois (IMC 3.2.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 3.2.3).

Figura 2.29 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.1 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.1.1) e depois (IMC 6.1.2) da aplicação do consolidante Tegovakon V e após o envelhecimento (IMC 6.1.3).

Figura 2.30 Distribuição dos diâmetros de acesso aos poros da patela IMC 6.2 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 6.2.1) e depois (IMC 6.2.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 6.2.3).

Figura 2.31 Distribuição dos diâmetros de acesso aos poros da patela IMC 7.1 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 7.1.1) e depois (IMC 7.1.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 7.1.3).

Figura 2.32 Distribuição dos diâmetros de acesso aos poros da patela IMC 7.2 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 7.2.1) e depois (IMC 7.2.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 7.2.3).

Fig. 2.33 Distribuição dos diâmetros de acesso aos poros da patela IMC 8.1 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 8.1.1) e depois (IMC 8.1.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 8.1.3).

Figura 2.34 Distribuição dos diâmetros de acesso aos poros da patela IMC 9.3 de microgranito empregue na Igreja Matriz de Caminha antes (IMC 9.3.1) e depois (IMC 9.3.2) da aplicação do consolidante HMK S 41 e após o envelhecimento (IMC 9.3.3).

2.4.4 Absorção de água por capilaridade

2.4.4.1 Antes da aplicação dos produtos de tratamento

No Quadro 2.28, apresentam-se os valores do aumento de peso por unidade de superfície e unidade de raiz quadrada do tempo (coeficiente de capilaridade A) e da ascensão da franja capilar por unidade de raiz quadrada do tempo (coeficiente de capilaridade B), obtidos do ensaio de absorção de água por capilaridade realizado nos trinta provetes cilíndricos de granito de grão médio e de microgranito antes da aplicação dos produtos de tratamento. Os resultados dos trinta provetes são apresentados no Anexo 2.

No granito de grão médio, os valores do coeficiente de capilaridade A variam entre 0,4949 g×cm⁻²×h^{-1/2} e 0,8590 g×cm⁻²×h^{-1/2} nos provetes de maior porosidade livre (7,08% $\leq N_{48} \leq 10,30\%$) e entre 0,2451 g×cm⁻²×h^{-1/2} e 0,3949 g×cm⁻²×h^{-1/2} nos provetes de menor porosidade livre (4,85% $\leq N_{48} \leq 6,19\%$). No microgranito, os valores do coeficiente de capilaridade A variam entre 0,1783 g×cm⁻²×h^{-1/2} e 0,2390 g×cm⁻²×h^{-1/2} (4,04% $\leq N_{48} \leq 4,48\%$).

Através da análise da Figura 2.35, pode-se verificar que os valores do coeficiente de capilaridade A aumentam linearmente com a porosidade livre às quarenta e oito horas (A=0,1100 × N₄₈-0,2862) nos dezoito provetes do granito de duas micas de grão médio, tendo sido obtido um elevado coeficiente de correlação r^2 =0,9801.

Relativamente aos doze provetes de microgranito de duas micas, não se obteve uma boa correlação linear entre o coeficiente de capilaridade A e a porosidade livre às quarenta e oito horas (A=0,0568×N₄₈-0,0250 com r^2 =0,1864), em virtude de os valores dos dois parâmetros se distribuírem por uma gama muito limitada.

No entanto, se se considerar os trinta provetes de granito de duas micas e de microgranito, há uma boa correlação linear entre os dois parâmetros: $A=0,1032 \times N_{48}$ -0,2307 com r²=0,9810 (Figura 2.36).

Begonha (2001) obteve a correlação de tipo potencial $A=0,01639 \times N_{48}^{1,4676}$ com $r^2=0,927$ entre os valores de A e de N_{48} para o granito do Porto.

Tipo de granito	Provete cilíndrico	Coeficiente A (g×cm ⁻² ×h ^{-1/2})	Coeficiente B (cm×h ^{-1/2})
	IMC 1.1	0,4949	7,9767
	IMC 1.2	0,5610	8,0642
	IMC 1.3	0,5798	9,1060
	IMC 1.4	0,6480	9,4764
	IMC 2.1	0,6856	8,3393
	IMC 2.2	0,8088	9,4210
	IMC 2.3	0,8590	9,6214
	IMC 2.4	0,8574	9,6345
Granito de duas micas	IMC 3.1	0,3306	6,3395
de grão médio	IMC 3.2	0,3479	6.5232
	IMC 4.1	0,2905	5,8839
	IMC 4.2	0,2821	6,2952
	IMC 4.3	0,2610	5,7581
	IMC 4.4	0,2451	5,6148
	IMC 5.1	0,3215	6,7985
	IMC 5.2	0,3708	7,0972
	IMC 5.3	0,3773	7,0719
	IMC 5.4	0,3949	7,1451
	IMC 6.1	0,2146	5,7655
	IMC 6.2	0,2046	5,5011
	IMC 6.3	0,1783	5,1410
	IMC 7.1	0,2137	5,3350
	IMC 7.2	0,1968	5,2498
Microgranito de	IMC 7.3	0,2042	5,5031
duas micas	IMC 8.1	0,2272	6,5236
	IMC 8.2	0,2303	6,4645
	IMC 8.3	0,2390	6,6003
	IMC 9.1	0,2191	5,8087
	IMC 9.2	0,2335	6,2768
	IMC 9.3	0,2245	6,5611

Quadro 2.28 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos.

Figura 2.35 Correlação linear entre os valores de A e de N₄₈ obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.

Figura 2.36 Correlação linear entre os valores de A e de N₄₈ obtidos nos provetes de granito de grão médio e de microgranito da Igreja Matriz de Caminha.

Os valores do coeficiente de capilaridade A, obtidos no granito de grão médio, são da mesma ordem de grandeza, mas um pouco mais elevados, do que os obtidos por diversos autores em edifícios e monumentos construídos com granitos de duas micas com idêntica porosidade livre no Norte de Portugal (Quadro 2.29). Relativamente ao microgranito, os valores do coeficiente de capilaridade A são semelhantes aos publicados pelos referidos autores.

Monumento ou edifício estudado	A (g×cm ⁻² ×h ^{-1/2})
Igreja Matriz de Caminha − granito de grão médio (7,08% \leq N ₄₈ \leq 10,30%)	0,4949 – 0,8590
Igreja Matriz de Caminha – granito de grão médio (4,85%≤N₄8≤6,19%)	0,2451 – 0,3949
Igreja Matriz de Caminha – microgranito (4,04%≤N₄8≤4,48%)	0,1783 - 0,2390
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (7,36%≤N ₄₈ ≤8,53%) (Begonha, 2000)	0,3504 – 0,5248
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (4,61%≤N₄8≤4,88%) (Begonha, 2000)	0,1582 - 0,1810
Granito do Porto (6,26%≤N ₄₈ ≤8,31%) (Begonha, 2001)	0,1830 - 0,4640
Granito do Porto (4,04%≤N₄8≤4,94%) (Begonha, 2001)	0,1110 - 0,1940
Hospital de Santo António – pedras de granito do Porto afectadas por placas (6,29%≤N₄8≤7,46%) (Begonha, 2001)	0,1830 - 0,2520
Hospital de Santo António – pedras de granito do Porto afectadas por placas (3,38%≤N ₄₈ ≤5,27%) (Begonha, 2001)	0,0920 – 0,1480
Hospital de Santo António – pedras de granito do Porto afectadas por desagregação granular (3,96%≤N₄8≤4,29%) (Begonha, 2001)	0,0930 – 0,1210
Mosteiro de São João de Tarouca – granito de Vila Chã (6,83%≤N₄₅≤8,58%) (Begonha, 2002)	0,0891 – 0,2500
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (6,09%≤N₄₅≤7,68%) (Begonha, 2003a)	0,2241 – 0,3933
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (4,16%≤N₄8≤5,87%) (Begonha, 2003a)	0,0793 – 0,3023
Igreja de São Pedro de Rates – granito de grão fino a médio (6,08%≤N ₄₈ ≤7,26%) (Begonha, 2003a)	0,2376 – 0,3622
Igreja de São Pedro de Rates – granito de grão fino a médio (4,77%≤N ₄₈ ≤5,88%) (Begonha, 2003a)	0,1745 – 0,2914
Igreja Matriz de Espinho – granito de grão grosseiro (2,12%≤N ₄₈ ≤4,00%) (Begonha, 2003b)	0,0475 – 0,1231
Igreja Matriz de Espinho – granito de grão médio (2,75%≤N₄8≤3,58%) (Begonha, 2003b)	0,0992 – 0,1503
Convento de São Gonçalo de Amarante – granito de grão fino (3,02%≤N ₄₈ ≤4,19%) (Begonha, 2004b)	0,0837 - 0,2029
Igreja de Santa Maria de Leça – granito do Porto (3,00%≤N₄₅≤3,66%) (Moutinho, 2005)	0,0988 – 0,1527

Quadro 2.29 Valores limite do coeficiente de capilaridade A obtidos em granitos de duas micas empregues em monumentos e edifícios do Norte de Portugal.

O instante em que a franja capilar atinge o topo dos provetes coincide aproximadamente com o instante em que termina a embebição da rede porosa livremente acessível à água por capilaridade, marcado pela variação de declive da curva de absorção de água, facto verificado em todos os provetes. Efectivamente, quando a franja capilar atinge o topo dos provetes, o volume ou peso de água que penetrou na rede porosa corresponde aproximadamente à embebição da porosidade livre às quarenta e oito horas. Este ensaio mostra que, os dois granitos meteorizados empregues na Igreja Matriz de Caminha apresentam um comportamento que não se afasta significativamente do de um material poroso perfeitamente homogéneo, constituído por uma porometria unimodal igualmente distribuída ao longo dos provetes.

Nas Figuras 2.37 e 2.38, encontram-se representados os gráficos correspondentes ao ensaio de absorção de água por capilaridade realizado nos provetes IMC 2.1 de granito de grão médio e IMC 9.3 de microgranito com porosidades livres respectivamente iguais a 9,24% e 4,07%.

Figura 2.37 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 2.1 de granito de grão médio.

Figura 2.38 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 9.3 de microgranito.

Os valores do coeficiente de capilaridade B (valor da progressão da ascensão da franja capilar por unidade da raiz quadrada do tempo) são muito elevados nos dois tipos de granitos estudados na Igreja de Nossa Senhora de Assunção, Matriz de Caminha.

Com efeito, o Quadro 2.28 mostra que, no granito de grão médio, o coeficiente de capilaridade B varia de 7,9767 cm×h^{-1/2} a 9,6345 cm×h^{-1/2} nos provetes de maior porosidade livre (7,08%≤N₄₈≤10,30%) e de 5,6148 cm×h^{-1/2} a 7,1451 cm×h^{-1/2} nos provetes de menor porosidade livre (4,85%≤N₄₈≤6,19%). No microgranito, o coeficiente de capilaridade B varia entre 5,1410 cm×h^{-1/2} e 6,6003 cm×h^{-1/2} (4,04% ≤ N₄₈ ≤ 4,48%).

Atendendo unicamente aos dezoito provetes do granito de duas micas de grão médio, os valores do coeficiente de capilaridade B aumentam polinomialmente com os de N_{48} (B=- 0,0894× N_{48}^2 +2,0551× N_{48} -2,1408), tendo sido obtido um elevado coeficiente de correlação r²=0,9065 (Figura 2.39).

Figura 2.39 Correlação polinomial entre os valores de B e de N₄₈ obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.

No que concerne aos doze provetes de microgranito de duas micas, não se obteve uma boa correlação entre o coeficiente de capilaridade B e N_{48} (B=0,9875× N_{48} +1,7394 com r²=0,0587), em virtude de os valores dos dois parâmetros serem bastante próximos.

Todavia, se se considerar a totalidade dos trinta provetes, há uma boa correlação polinomial entre os dois parâmetros: B=-0,0034×N₄₈²+0,6996×N₄₈+2,9076 com r²=0,8683 (Figura 2.40).

Begonha (2001) obteve a correlação de tipo potencial $B=1,4623 \times N_{48}^{0,6330}$ com $r^2=0,676$ entre os valores de B e de N_{48} para o granito do Porto.

Se se tiver apenas em atenção os dezoito provetes do granito de duas micas de grão médio, os valores do coeficiente de capilaridade B aumentam polinomialmente com os de A: B=- $8,4990 \times A^2+15,7800 \times A+2,2722$ com r²=0,9509 (Figura 2.41).

Figura 2.40 Correlação polinomial entre os valores de B e de N₄₈ obtidos nos provetes de granito de grão médio e de microgranito da Igreja Matriz de Caminha.

Figura 2.41 Correlação polinomial entre os valores de B e de A obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.

Relativamente aos doze provetes de microgranito, não se obteve uma boa correlação entre os coeficientes de capilaridade B e A (B=28,6610×A-0,2818 com r^2 =0,7910), dado os valores dos dois parâmetros serem bastante próximos.

No entanto, para o conjunto dos trinta provetes dos dois tipos de granitos empregues na Igreja Matriz de Caminha, há uma boa correlação polinomial entre os coeficientes B e A: $B=-4,8579\times A^2+11,2530\times A+3,5535$ com r²=0,9217 (Figura 2.42).

Begonha (2001) obteve a correlação de tipo potencial $B=9,4958 \times A^{0,4680}$ com $r^2=0,857$ entre os valores dos coeficientes de capilaridade B e A para o granito do Porto.

Figura 2.42 Correlação polinomial entre os valores de B e de A obtidos nos provetes de granito de grão médio e de microgranito da Igreja Matriz de Caminha.

A velocidade de progressão da franja capilar, traduzida pelo coeficiente de capilaridade B, obtido nos dois granitos da Igreja Matriz de Caminha, enquadram-se nos mais altos valores publicados em trabalhos relativos a granitos de duas micas usados em edifícios e monumentos do Norte de Portugal, sendo por vezes os mais elevados (Quadro 2.30). Tal significa que, a transferência de soluções salinas ao longo da rede porosa das pedras dos dois tipos de granitos em estudo é muito rápida, apesar de os valores da porosidade serem relativamente baixos.

Monumento ou edifício estudado	B (cm×h ^{-1/2})	
Igreja Matriz de Caminha — granito de grão médio (7,08%≤N₄8≤10,30%)	7,9767 – 9,6345	
Igreja Matriz de Caminha — granito de grão médio (4,85%≤N ₄₈ ≤6,19%)	5,6148 – 7,1451	
Igreja Matriz de Caminha — microgranito (4,04%≤N₄₃≤4,48%)	5,1410 – 6,6003	
Granito de Braga (5,63%≤N ₄₈ ≤7,19%) (Alves, 1997)	2,7 - 3,1	
Granito de Gondizalves (2,32%≤N ₄₈ ≤7,31%) (Alves, 1997)	2,8 - 5,1	
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (7,36%≤N ₄₈ ≤8,53%) (Begonha, 2000)	5,149 – 7,123	
Mosteiro de São Miguel de Refojos – granito de grão médio a grosseiro (4,61%≤N ₄₈ ≤4,88%) (Begonha, 2000)	3,448 – 4,607	
Granito do Porto (6,26%≤N₄8≤8,31%) (Begonha, 2001)	3,010 – 6,356	
Granito do Porto (4,04%≤N ₄₈ ≤4,94%) (Begonha, 2001)	2,666 - 4,658	
Hospital de Santo António – pedras de granito do Porto afectadas por placas (6,29%≤N ₄₈ ≤7,46%) (Begonha, 2001)	3,010 - 4,889	
Hospital de Santo António — pedras de granito do Porto afectadas por placas (3,38%≤N₄₅≤5,27%) (Begonha, 2001)	2,818 - 3,123	
Hospital de Santo António – pedras de granito do Porto afectadas por desagregação granular (3,96%≤N₄₅≤4,29%) (Begonha, 2001)	2,448 – 3,106	
Mosteiro de São João de Tarouca – granito de Vila Chã (6,83%≤N₄₅≤8,58%) (Begonha, 2002)	1,5710 – 3,5111	
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (6,09%≤N₄8≤7,68%) (Begonha, 2003a)	4,7261 – 7,0000	
Igreja de São Pedro de Rates – granito de grão médio a grosseiro (4,16%≤N₄8≤5,87%) (Begonha, 2003a)	2,4805 – 7,1991	
Igreja de São Pedro de Rates – granito de grão fino a médio (6,08%≤N₄8≤7,26%) (Begonha, 2003a)	4,2622 – 6,7697	
Igreja de São Pedro de Rates – granito de grão fino a médio (4,77%≤N₄8≤5,88%) (Begonha, 2003a)	3,9614 – 6,4640	
Igreja Matriz de Espinho – granito de grão grosseiro (2,12%≤N ₄₈ ≤4,00%) (Begonha, 2003b)	2,1367 – 3,5821	
Igreja Matriz de Espinho – granito de grão médio (2,75%≤N₄8≤3,58%) (Begonha, 2003b)	3,7472 - 4,6574	
Convento de São Gonçalo de Amarante – granito de grão fino (3,02%≤N ₄₈ ≤4,19%) (Begonha, 2004b)	3,1357 – 5,6552	
Igreja de Santa Maria de Leça – granito do Porto (3,00%≤N₄8≤3,66%) (Moutinho, 2005)	3,9793 - 6,1742	

Quadro 2.30	Valores limite do coeficiente de capilaridade B obtidos em granitos de duas m	nicas
	empregues em monumentos e edifícios do Norte de Portugal.	

2.4.4.2 Depois da aplicação dos produtos de tratamento

No Quadro 2.31, apresentam-se os valores do aumento dos coeficientes de capilaridade A_T , B_T e B_{1T} obtidos no ensaio de capilaridade realizado nos trinta provetes cilíndricos depois de se aplicaram os dois hidrófugos e os dois produtos consolidantes. Os provetes obtidos dos tarolos 6, 8 e 9 apresentam dois coeficientes associados à ascensão da franja capilar (B_T e B_{1T}). Os resultados dos trinta provetes são mostrados no Anexo 2.

Tipo de granito	Provete cilíndrico	Coeficiente A _T (g×cm ⁻² ×h ^{-1/2})	Coeficiente B _T (cm×h ^{-1/2})	Coeficiente B _{1T} (cm×h ^{-1/2})
	IMC 1.1	0,0051	0,0000	
	IMC 1.2	0,0054	0,0000	
	IMC 1.3	0,0056	0,0000	
	IMC 1.4	0,0050	0,0000	
	IMC 2.1	0,0057	0,0000	
	IMC 2.2	0,0065	0,0000	
	IMC 2.3	0,1695	2,0463	
	IMC 2.4	0,3941	5,6683	
Granito de duas micas	IMC 3.1	0,1722	3,6976	
de grão médio	IMC 3.2	0,3074	6,2139	
	IMC 4.1	0,0045	0,0000	
	IMC 4.2	0,0046	0,0000	
	IMC 4.3	0,0045	0,0000	
	IMC 4.4	0,0044	0,0000	
	IMC 5.1	0,0055	0,0000	
	IMC 5.2	0,0048	0,0000	
	IMC 5.3	0,1833	3,7245	
	IMC 5.4	0,3486	7,4412	
	IMC 6.1	0,0492	0,8353	5,6244
	IMC 6.2	0,1126	1,3241	4,8725
	IMC 6.3	0,0484	0,5086	31,3000
	IMC 7.1	0,2173	7,3632	
	IMC 7.2	0,1291	3,6687	
Microgranito de	IMC 7.3	0,1858	2,2481	
duas micas	IMC 8.1	0,1209	1,0199	7,6233
	IMC 8.2	0,0812	0,4369	5,4655
	IMC 8.3	0,1761	0,9212	9,7712
	IMC 9.1	0,1242	0,1910	35,4650
	IMC 9.2	0,1665	1,7054	6,4861
	IMC 9.3	0,0902	0,7951	5,6920

Quadro 2.31 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos depois da aplicação dos diversos tratamentos.

No Quadro 2.32, mostram-se, conforme o tipo de tratamento, os valores do aumento de peso por unidade de superfície e unidade de raiz quadrada do tempo antes (A) e após (A_T) a aplicação dos diversos produtos e as variações percentuais médias (ΔA_T) para cada provete, para cada produto individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S41).

A variação percentual de cada provete (ΔA_T) (Quadro 2.32, coluna 5) obteve-se pela seguinte equação:

$$\Delta A_{T} = 100 \times (A_{T} - A)/A.$$
 (2.42)

A coluna 6 do mesmo quadro apresenta a média e o respectivo desvio padrão das variações percentuais dos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento.

A coluna 7 do Quadro 2.32 mostra os resultados da média e respectivo desvio padrão das variações percentuais dos provetes sujeitos a tratamento com um produto hidrófugo, e os valores da média e respectivo desvio padrão das variações percentuais dos provetes sujeitos a tratamento com um produto consolidante.

Nos provetes tratados respectivamente com o produto hidrófugo Sikagard 700 S e HB Siliker S 101, o coeficiente de capilaridade A reduziu-se em cerca de 99% relativamente aos valores que apresentavam antes do tratamento.

Nos provetes tratados respectivamente com o produto consolidante Tegovakon V e com o produto consolidante HMK S 41, o coeficiente de capilaridade A reduziu-se, em cerca de 59% e 26% relativamente aos valores que apresentavam antes do tratamento.

Begonha (2003a) obteve reduções de 27% e de 13% no valor do coeficiente de capilaridade A, respectivamente no granito moscovítico de grão fino a médio e no granito de duas micas de grão médio a grosseiro empregues na Igreja de São Pedro de Rates, depois de consolidados com S 41.

Nas Figuras 2.43 a 2.46, encontram-se representados os gráficos correspondentes ao ensaio de absorção de água por capilaridade realizado nos provetes IMC 4.2T e IMC 1.3T de granito de grão médio, respectivamente tratados com os produtos hidrófugos Sikagard e Siliker e nos provetes IMC 7.2T e IMC 9.2T de microgranito, respectivamente tratados com os produtos consolidantes Tegovakon V e HMK S 41.

O Quadro 2.33 mostra, por provete, os valores da ascensão da franja capilar por unidade de raiz quadrada do tempo antes (B) e após (B_T) a aplicação dos produtos de tratamento e as variações percentuais médias (ΔB_T) para cada provete, para cada produto individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes na sua globalidade (Tegovakon V e S41).

Os valores das colunas 5, 6 e 7 deste quadro foram calculados de modo igual aos das colunas correspondentes no Quadro 2.32.

Tratamento	Provete	A (g×cm ⁻² ×h ^{-1/2})	A _T (g×cm ⁻² ×h ^{-1/2})	ΔΑ _τ (%)	ΔΑ _τ (%)	ΔΑ _τ (%)
	IMC 1.1	0,4949	0,0051	-98,97		
Sikagard	IMC 1.4	0,6480	0,0050	-99,23		09.710.4
	IMC 2.1	0,6856	0,0057	-99,17	00.01.0.4	
	IMC 4.2	0,2821	0,0046	-98,37	-90,0±0,4	
	IMC 4.3	0,2610	0,0045	-98,28		
	IMC 5.2	0,3708	0,0048	-98,71		
	IMC 1.2	0,5610	0,0054	-99,04		-90,7±0,4
	IMC 1.3	0,5798	0,0056	-99,03		
Silikor	IMC 2.2	0,8088	0,0065	-99,20	09 7±0 4	
Silikei	IMC 4.1	0,2905	0,0045	-98,45	-90,7±0,4	
	IMC 4.4	0,2451	0,0044	-98,20		
	IMC 5.1	0,3215	0,0055	-98,29		
	IMC 2.3	0,8590	0,1695	-80,27		
	IMC 3.1	0,3306	0,1722	-47,91		
	IMC 5.3	0,3773	0,1833	-51,42		
	IMC 6.1	0,2146	0,0492	-77,07		
Tegovakon V	IMC 6.3	0,1783	0,0484	-72,85	-59,1±16,0	
	IMC 7.2	0,1968	0,1291	-34,40		
	IMC 8.2	0,2303	0,0812	-64,74		
	IMC 9.1	0,2191	0,1242	-43,31		
	IMC 9.3	0,2245	0,0902	-59,82		42 41 24 4
	IMC 2.4	0,8574	0,3941	-54,04		42,4±24,4
	IMC 3.2	0,3479	0,3074	-11,64		
	IMC 5.4	0,3949	0,3486	-11,72	-	
S 41	IMC 6.2	0,2046	0,1126	-44,97		
	IMC 7.1	0,2137	0,2173	+1,68	-25,7±19,5	
	IMC 7.3	0,2042	0,1858	-9,01		
	IMC 8.1	0,2272	0,1209	-46,79		
	IMC 8.3	0,2390	0,1761	-26,32	-26,32	
	IMC 9.2	0,2335	0,1665	-28,69		

Quadro 2.32 Valores do coeficiente de capilaridade A antes e depois da aplicação dos tratamentos; variação percentual média de A (ΔA_T) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e o conjunto dos dois consolidantes.

Figura 2.43 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.2T de granito de grão médio (tratado com o hidrófugo Sikagard).

Figura 2.44 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 1.3T de granito de grão médio (tratado com o hidrófugo Siliker).

Figura 2.45 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 7.2T de microgranito (tratado com o consolidante Tegovakon V).

Figura 2.46 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 9.2T de microgranito (tratado com o consolidante HMK S 41).

Tratamento	Provete	В (cm×h ^{-1/2})	Β _τ (cm×h ^{-1/2})	ΔB _T (%)	ΔΒ _τ (%)	ΔB _T (%)
	IMC 1.1	7,9767	0,0000	-100,00		100.010.0
Sikagard	IMC 1.4	9,4764	0,0000	-100,00		
	IMC 2.1	8,3393	0,0000	-100,00	100 0+0 0	
	IMC 4.2	6,2952	0,0000	-100,00	-100,0±0,0	
	IMC 4.3	5,7581	0,0000	-100,00		
	IMC 5.2	7,0972	0,0000	-100,00		
	IMC 1.2	8,0642	0,0000	-100,00		-100,0±0,0
	IMC 1.3	9,1060	0,0000	-100,00		
Cilikor	IMC 2.2	9,4210	0,0000	-100,00	100.0+0.0	
Siliker	IMC 4.1	5,8839	0,0000	-100,00	-100,0±0,0	
	IMC 4.4	5,6148	0,0000	-100,00		
	IMC 5.1	6,7985	0,0000	-100,00		
	IMC 2.3	9,6214	2,0463	-78,73		E7 4+29 E
	IMC 3.1	6,3395	3,6976	-41,67		
	IMC 5.3	7,0719	3,7245	-47,33		
	IMC 6.1	5,7655	0,8353	-85,51	-72,4±25,4	
Tegovakon V	IMC 6.3	5,1410	0,5086	-90,11		
	IMC 7.2	5,2498	3,6687	-30,12		
	IMC 8.2	6,4645	0,4369	-93,24		
	IMC 9.1	5,8087	0,1910	-96,71		
	IMC 9.3	6,5611	0,7951	-87,88		
	IMC 2.4	9,6345	5,6683	-41,17		57,4±38,5
	IMC 3.2	6,5232	6,2139	-4,74		
	IMC 5.4	7,1451	7,4412	-4,14		
	IMC 6.2	5,5011	1,3241	-75,93		
S 41	IMC 7.1	5,3350	7,3632	+38,02	-42,5±44,8	
	IMC 7.3	5,5031	2,2481	-59,15		
	IMC 8.1	6,5236	1,0199	-84,37		
	IMC 8.3	6,6003	0,9212	-86,04		
	IMC 9.2	6,2768	1,7054	-72,83		

Quadro 2.33 Valores do coeficiente de capilaridade B antes e depois da aplicação dos tratamentos; variação percentual média de B (ΔB_T) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, o coeficiente de capilaridade B reduziu-se em 100% relativamente aos valores que apresentava antes do tratamento, isto é, não se verificou a ascensão da franja capilar em qualquer dos doze provetes.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o coeficiente de capilaridade B reduziu-se, respectivamente, em cerca de 72% e 42% relativamente aos valores que apresentava antes do tratamento.

Nos provetes obtidos através dos tarolos 6, 8 e 9 (tratados com produtos consolidantes), a ascensão da franja capilar é constituída por dois troços lineares e não por um único troço linear. Em sete dos nove provetes em que tal se verifica, o valor do coeficiente de capilaridade B_{1T} é semelhante ao coeficiente de capilaridade B, obtido nos mesmos provetes antes de terem sido submetidos ao processo de consolidação. O ponto de inflexão da curva correspondente à ascensão da franja localiza-se entre 0,85 cm e 1,95 cm de altura nos 9 provetes, situando-se em média a 1,50 cm nos 5 provetes tratados com Tegovakon V e a 1,46 cm nos 4 provetes tratados com HMK S 41.

O comportamento dos dois granitos é igual para cada um dos dois produtos hidrófugos Sikagard 700 S e HB Siliker S 101.

No que concerne aos produtos consolidantes, verifica-se uma maior diminuição dos coeficientes de capilaridade A e B com o produto Tegovakon V do que com o produto HMK S 41.

2.4.4.3 Após ensaio de envelhecimento acelerado

No Quadro 2.34, apresentam-se os valores do aumento dos coeficientes de capilaridade A_E , B_E e B_{1E} calculados no ensaio de capilaridade realizado nos trinta provetes cilíndricos após a aplicação dos diversos produtos de tratamento e depois de terem sido submetidos aos ensaios de envelhecimento. No Anexo 2, apresentam-se os resultados obtidos nos trinta provetes.

Tipo de granito	Provete cilíndrico	Coeficiente A _E (g×cm ⁻² ×h ^{-1/2})	Coeficiente B _E (cm×h ^{-1/2})	Coeficiente B _{1E} (cm×h ^{-1/2})
	IMC 1.1	0,0034	0,0000	
	IMC 1.2	0,0033	0,0000	
	IMC 1.3	0,0036	0,0000	
	IMC 1.4	0,0100	0,0000	
	IMC 2.1	0,0049	0,0000	
	IMC 2.2	0,0043	0,0000	
	IMC 2.3	0,4109	5,8975	
	IMC 2.4	0,2883	4,1370	
Granito de	IMC 3.1	0,2188	4,7967	
duas micas de grão médio	IMC 3.2	0,2738	5,5603	
5.00.0000	IMC 4.1	0,0033	0,0000	
	IMC 4.2	0,0032	0,0000	
	IMC 4.3	0,0036	0,0000	
	IMC 4.4	0,0035	0,0000	
	IMC 5.1	0,0037	0,0000	
	IMC 5.2	0,0042	0,0000	
	IMC 5.3	0,3323	6,9405	
	IMC 5.4	0,3302	6,6688	
	IMC 6.1	0,1187	4,3591	
	IMC 6.2	0,1489	4,3222	
	IMC 6.3	0,1230	4,6984	
	IMC 7.1	0,1876	4,4749	
	IMC 7.2	0,1433	4,8689	
Microgranito de duas micas	IMC 7.3	0,1389	4,6838	
	IMC 8.1	0,1609	1,9817	9,3551
	IMC 8.2	0,1164	4,1003	
	IMC 8.3	0,1689	5,0028	
	IMC 9.1	0,1206	4,1364	
	IMC 9.2	0,1825	5,1147	
	IMC 9.3	0,1256	1,8582	8,1942

Quadro 2.34 Resultados do ensaio de capilaridade obtidos nos provetes cilíndricos depois da aplicação dos diversos tratamentos e após os ensaios de envelhecimento.
A variação do coeficiente de capilaridade A de cada provete, após os ensaios de envelhecimento, relativamente ao valor antes da realização dos mesmos (ΔA_E) (Quadro 3.31, coluna 5) obteve-se pela seguinte equação:

$$\Delta A_{\rm E} = 100 \times (A_{\rm E} - A_{\rm T})/A_{\rm T} \tag{2.43}$$

A coluna 6 apresenta a média e o respectivo desvio padrão das variações percentuais do coeficiente de capilaridade A nos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento.

A coluna 7 do mesmo quadro apresenta a média e respectivo desvio padrão das variações do coeficiente de capilaridade A, após a execução dos ensaios de envelhecimento nos provetes em que foi aplicado um dos dois hidrófugos (Sikagard ou Siliker) e a média respectivo desvio padrão nos 12 provetes em que foi aplicado um dos dois consolidantes (Tegovakon V ou S 41).

Nos 6 provetes tratados com o produto hidrófugo Sikagard 700 S e nos 6 provetes tratados com o produto hidrófugo HB Siliker S 101, o coeficiente de capilaridade A reduziu-se em média, respectivamente, 22% e de 31% relativamente aos valores que apresentava antes do envelhecimento. No cálculo da média dos provetes tratados com Sikagard não se entrou em conta com o valor do provete IMC 1.4E, dado o mesmo ser totalmente distinto dos restantes provetes tratados com os produtos hidrófugos.

Nos provetes tratados com o produto consolidante Tegovakon V, o coeficiente de capilaridade A aumentou em média, cerca de 71% e nos provetes tratados com o produto consolidante HMK S 41 o coeficiente de capilaridade A teve uma pequena diminuição de cerca de 1%, relativamente aos valores que apresentava antes do envelhecimento. Verifica-se, além disso, uma grande dispersão de resultados nos valores de ΔA_E , nos provetes em que foram aplicados os dois tipos de consolidantes.

Nas Figuras 2.47 a 2.50, encontram-se representados os gráficos correspondentes ao ensaio de absorção de água por capilaridade realizado nos provetes IMC 4.3E e IMC 4.4E de granito de grão médio, respectivamente tratados com os produtos hidrófugos Sikagard e Siliker e nos provetes IMC 3.1E e IMC 8.1E de microgranito, respectivamente tratados com os produtos consolidantes Tegovakon V e HMK S 41.

Tratamento	Provete	A _E (g×cm ⁻² ×h ^{-1/2})	A _E (g×cm ⁻² ×h ^{-1/2})	ΔΑ _ε (%)	ΔA _E (%)	ΔΑ _ε (%)
	IMC 1.1	0,0051	0,0034	-33,33		
	IMC 1.4	0,0050	0,0100	100,00		
Sikagard	IMC 2.1	0,0057	0,0049	-14,04	22 1+0 4	
Sikayalu	IMC 4.2	0,0046	0,0032	-30,43	-22,119,4	
	IMC 4.3	0,0045	0,0036	-20,00		
	IMC 5.2	0,0048	0,0042	-12,50		-27 1+0.0
	IMC 1.2	0,0054	0,0033	-38,89		-27,1±9,0
	IMC 1.3	0,0056	0,0036	-35,71		
Silikor	IMC 2.2	0,0065	0,0043	-33,85	21 4+6 7	
Silikei	IMC 4.1	0,0045	0,0033	-26,67	-31,4±0,7	
	IMC 4.4	0,0044	0,0035	-20,45		
	IMC 5.1	0,0055	0,0037	-32,73		
	IMC 2.3	0,1695	0,4109	142,42		
	IMC 3.1	0,1722	0,2188	27,06		
	IMC 5.3	0,1833	0,3323	81,29		
	IMC 6.1	0,0492	0,1187	141,26	+70,8±61,1	
Tegovakon V	IMC 6.3	0,0484	0,1230	154,13		
	IMC 7.2	0,1291	0,1433	11,00		
	IMC 8.2	0,0812	0,1164	43,35		
	IMC 9.1	0,1242	0,1206	-2,90		
	IMC 9.3	0,0902	0,1256	39,25		124 01 57 0
	IMC 2.4	0,3941	0,2883	-26,85		+34,0±37,9
	IMC 3.2	0,3074	0,2738	-10,93		
	IMC 5.4	0,3486	0,3302	-5,28		
	IMC 6.2	0,1126	0,1489	32,24		
S 41	IMC 7.1	0,2173	0,1876	-13,67	-1,2±22,1	
	IMC 7.3	0,1858	0,1389	-25,34]	
	IMC 8.1	0,1209	0,1609	33,09		
	IMC 8.3	0,1761	0,1689	-4,09]	
	IMC 9.2	0,1665	0,1825	9,61		

Quadro 2.35 Valores do coeficiente de capilaridade A antes e depois da realização dos ensaios de envelhecimento; variação percentual média de A (ΔA_E) para cada provete, produto de tratamento; conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Figura 2.47 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.3E de granito de grão médio (tratado com o produto hidrófugo Sikagard e após envelhecimento).

Figura 2.48 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 4.4E de granito de grão médio (tratado com o produto hidrófugo Siliker e após envelhecimento).

Figura 2.49 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 3.1E de microgranito (tratado com o consolidante Tegovakon V e após envelhecimento).

Figura 2.50 Diagrama do ensaio de absorção de água por capilaridade – provete IMC 8.1E de microgranito (tratado com o consolidante HMK S 41 e após envelhecimento).

O Quadro 2.36 mostra, para cada provete, os valores da ascensão da franja capilar por unidade de raiz quadrada do tempo antes (B_T) e após (B_E) os ensaios de envelhecimento, bem como as variações médias de B (ΔB_E) para cada provete, para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S 41).

Tratamento	Provete	Β _τ cm×h ^{-1/2})	B _E (cm×h ^{-1/2})	ΔB _E (%)	ΔB _E (%)	ΔB _E (%)
	IMC 1.1	0,0000	0,0000	0,00		
	IMC 1.4	0,0000	0,0000	0,00		
Cilia anud	IMC 2.1	0,0000	0,0000	0,00	0.010.0	
Sikagard	IMC 4.2	0,0000	0,0000	0,00	0,0±0,0	
	IMC 4.3	0,0000	0,0000	0,00		
	IMC 5.2	0,0000	0,0000	0,00		
	IMC 1.2	0,0000	0,0000	0,00		0,0±0,0
	IMC 1.3	0,0000	0,0000	0,00		
Cilikor	IMC 2.2	0,0000	0,0000	0,00	0.010.0	
Siliker	IMC 4.1	0,0000	0,0000	0,00	0,0±0,0	
	IMC 4.4	0,0000	0,0000	0,00		
	IMC 5.1	0,0000	0,0000	0,00		
	IMC 2.3	2,0463	5,8975	188,20		
	IMC 3.1	3,6976	4,7967	29,72		
	IMC 5.3	3,7245	6,9405	86,35		
	IMC 6.1	0,8353	4,3591	421,86	513,4±663,1	
Tegovakon V	IMC 6.3	0,5086	4,6984	823,79		
	IMC 7.2	3,6687	4,8689	32,71		
	IMC 8.2	0,4369	4,1003	838,50		
	IMC 9.1	0,1910	4,1364	2065,65		
	IMC 9.3	0,7951	1,8582	133,71		211 4+511 0
	IMC 2.4	5,6683	4,1370	-27,02		311,4±311,9
	IMC 3.2	6,2139	5,5603	-10,52		
	IMC 5.4	7,4412	6,6688	-10,38		
	IMC 6.2	1,3241	4,3222	226,43		
S 41	IMC 7.1	7,3632	4,4749	-39,23	109,4±159,2	
	IMC 7.3	2,2481	4,6838	108,34		
	IMC 8.1	1,0199	1,9817	94,30		
	IMC 8.3	0,9212	5,0028	443,07		
	IMC 9.2	1,7054	5,1147	199,91		

Quadro 2.36 Valores do coeficiente de capilaridade B antes e depois da realização dos ensaios de envelhecimento; variação média de B (ΔB_T) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Os valores das colunas 5, 6 e 7 deste quadro foram calculados do mesmo modo do das colunas correspondentes do Quadro 2.35.

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, não se verificou a ascensão da franja capilar após os ensaios de envelhecimento. O coeficiente de capilaridade B é portanto nulo, não se registando, assim, qualquer alteração do seu valor relativamente aos resultados determinados antes dos ensaios de envelhecimento.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o coeficiente de capilaridade B aumentou em média, depois da realização dos ensaios de envelhecimento, respectivamente cerca de 5,1 vezes e 1,1 vezes comparativamente aos valores que apresentava antes do tratamento. A dispersão de resultados é, todavia, muito grande.

2.4.5 Evaporação

2.4.5.1 Antes da aplicação dos produtos de tratamento

O Quadro 2.37 apresenta, para os trinta provetes, os resultados do fluxo de evaporação constante q, relativo ao primeiro segmento da curva de evaporação dW/S(t), da saturação crítica S_c (ponto a partir do qual a evaporação deixa de se realizar à superfície do provete, passando a efectuar-se no seu interior) e, do instante t(S_c) em que a saturação crítica é atingida. São ainda apresentados, para cada um dos provetes, os valores da porosidade livre às quarenta e oito horas (N_{48}) e dos coeficientes de capilaridade A e B. O cálculo de q corresponde ao declive da recta ajustada pelo método dos míminos quadrados aos resultados de dW/S e de t. Estes resultados foram obtidos nos provetes cilíndricos de granito de duas micas de grão médio e de microgranito de duas micas da Igreja Matriz de Caminha, antes da aplicação dos produtos de tratamento. No Anexo 2, mostram-se os resultados obtidos nos trinta provetes.

Nas Figuras 2.51 e 2.52, encontram-se representados os gráficos correspondentes ao ensaio de evaporação realizado nos provetes IMC 5.2 de granito de duas micas de grão médio e IMC 8.3 de microgranito de duas micas. Através da análise destas figuras, verifica-se que a curva da perda de peso por unidade de superfície (dW/S) em função do tempo (t) divide-se em três segmentos distintos,

sendo o primeiro, um segmento de recta de forte declive que corresponde a um período no qual o fluxo de evaporação do vapor de água q é constante; o segundo, um segmento intermédio curvo em que há uma diminuição progressiva do valor do fluxo de evaporação; o terceiro, um segmento rectilíneo com fluxo de evaporação constante, mas de declive muito inferior ao primeiro segmento.

Tipo de	Provete	N ₄₈	A	В	q	Sc	t(S _c)
granito	cilíndrico	(%)	(g×cm ⁻² ×h ^{-1/2})	(cm×h ^{-1/2})	(g×cm ⁻² ×h ⁻¹)	(%)	(h)
	IMC 1.1	7,08	0,4949	7,9767	-0,0027	41	81,3
	IMC 1.2	7,36	0,5610	8,0642	-0,0021	31	129,4
	IMC 1.3	7,90	0,5798	9,1060	-0,0020	37	129,4
	IMC 1.4	8,81	0,6480	9,4764	-0,0019	31	155,3
	IMC 2.1	9,24	0,6856	8,3393	-0,0018	35	175,8
	IMC 2.2	9,87	0,8088	9,4210	-0,0021	29	175,7
	IMC 2.3	10,10	0,8590	9,6214	-0,0030	31	129,3
	IMC 2.4	10,30	0,8574	9,6345	-0,0024	30	155,2
Granito de	IMC 3.1	6,11	0,3306	6,3395	-0,0023	40	72,2
grão médio	IMC 3.2	6,19	0,3479	6.5232	-0,0022	40	81,0
-	IMC 4.1	5,25	0,2905	5,8839	-0,0018	45	81,0
	IMC 4.2	5,27	0,2821	6,2952	-0,0016	41	94,8
	IMC 4.3	5,10	0,2610	5,7581	-0,0019	39	80,9
	IMC 4.4	4,85	0,2451	5,6148	-0,0018	38	80,9
	IMC 5.1	5,25	0,3215	6,7985	-0,0017	45	80,9
	IMC 5.2	5,65	0,3708	7,0972	-0,0018	40	94,7
	IMC 5.3	5,82	0,3773	7,0719	-0,0016	34	120,9
	IMC 5.4	5,95	0,3949	7,1451	-0,0015	40	120,9
	IMC 6.1	4,24	0,2146	5,7655	-0,0031	55	32,4
	IMC 6.2	4,18	0,2046	5,5011	-0,0029	52	32,3
	IMC 6.3	4,13	0,1783	5,1410	-0,0023	43	50,8
	IMC 7.1	4,33	0,2137	5,3350	-0,0027	48	45,1
	IMC 7.2	4,05	0,1968	5,2498	-0,0025	48	45,1
Microgranito	IMC 7.3	4,04	0,2042	5,5031	-0,0021	52	45,1
de duas micas	IMC 8.1	4,48	0,2272	6,5236	-0,0027	39	50,7
	IMC 8.2	4,27	0,2303	6,4645	-0,0020	36	50,6
	IMC 8.3	4,12	0,2390	6,6003	-0,0032	52	32,1
	IMC 9.1	4,37	0,2191	5,8087	-0,0023	39	59,8
	IMC 9.2	4,21	0,2335	6,2768	-0,0025	50	44,9
	IMC 9.3	4,07	0,2245	6,5611	-0,0027	43	44,9

	Qu	adro	2.37	Resultados	dos	ensaios	de eva	aporaçã	o nos	provetes	cilíndricos	antes	dos	tratamento	os.
--	----	------	------	------------	-----	---------	--------	---------	-------	----------	-------------	-------	-----	------------	-----

Figura 2.51 Diagrama do ensaio de evaporação – provete IMC 5.2 de granito de duas micas de grão médio (antes dos tratamentos).

Figura 2.52 Diagrama do ensaio de evaporação – provete IMC 8.3 de microgranito de duas micas (antes dos tratamentos).

Através da análise do Quadro 2.37, verifica-se que o fluxo de evaporação constante (q) varia, no granito de grão médio de duas micas, entre -0,0015 $g \times cm^{-2} \times h^{-1}$ e -0,0030 $g \times cm^{-2} \times h^{-1}$ e, no

microgranito, entre -0,0020 g×cm⁻²×h⁻¹ e -0,0032 g×cm⁻²×h⁻¹, não apresentando por isso grandes variações de provete para provete, apesar da porosidade livre às quarenta e oito horas variar, no conjunto dos trinta provetes, de 4,04% a 10,30%.

Estes valores são um pouco inferiores, mas da mesma ordem de grandeza dos obtidos por Begonha (2001) (-0,0026 g×cm⁻²×h⁻¹ \leq q \leq -0,0053 g×cm⁻²×h⁻¹) em provetes de granito o Porto obtidos em pedras do Hospital de Santo António com porosidade livre às quarenta e oito horas entre 1,70% e 7,47%. Hammecker (1993) obteve igualmente valores de fluxo de evaporação um pouco superiores, mas relativos a provetes dos arenitos da Alsácia de Roshein, Osenbach, Stangenberg, Gueberschwihr e Darney (-0,0034 g×cm⁻²×h⁻¹ \leq q \leq -0,0057 g×cm⁻²×h⁻¹) com 3,31% \leq N₄₈ \leq 15,02% e dos calcários espanhóis de Laspra e Hontória (-0,0098 g×cm⁻²×h⁻¹ \leq q \leq -0,0103 g×cm⁻²×h⁻¹) com 14,2% \leq N₄₈ \leq 28,1%.

Relativamente aos valores obtidos para a saturação crítica (S_c), estes variam entre 29% e 45%, no caso do granito de duas micas de grão médio e entre 36% e 55% no microgranito de duas micas.

Begonha (2001) obteve, nos provetes de granito do Porto anteriormente referidos, valores de S_c compreendidos entre 45% e 71%. Hammecker (1993) encontrou valores de saturação crítica para os arenitos e calcários referidos, respectivamente entre 50% e 80% e entre 32% e 42%.

O instante em que a saturação crítica é atingida ($t(S_c)$), varia significativamente de provete para provete, estando compreendido entre as 72,2 h e as 175,8 h no granito de duas micas de grão médio e entre as 32,1 h e as 59,8 h no microgranito.

A saturação crítica foi atingida nos provetes de granito do Porto ao fim do intervalo de tempo compreendido entre as 7,6 h e as 51,7 h (Begonha, 2001), nos arenitos alsacianos entre as 90,7 h e as 226,8 h e nos calcários espanhóis entre as 129,6 h e as 145,8 h (Hammecker, 1993).

Atendendo unicamente aos dezoito provetes de granito de duas micas de grão médio, os valores do tempo em que a saturação crítica é atingida (t(S_c)) aumentam linearmente com a porosidade livre às quarenta e oito horas (N₄₈ = 0,0455 x t(S_c) + 1,8525). No entanto, obteve-se um coeficiente de correlação relativamente baixo: r^2 = 0,7057 (Figura 2.53).

No que concerne aos doze provetes de microgranito de duas micas, não se obteve uma boa correlação linear entre a porosidade livre às quarenta e oito horas e o tempo em que a saturação crítica é atingida ($N_{48} = 0,0062 \times t(S_c) + 3,9338 \text{ com } r^2 = 0,1464$) devido ao facto de os valores de $t(S_c)$ e de N_{48} serem próximos uns dos outros.

Figura 2.53 Correlação linear entre os valores de N₄₈ e t(S_c) obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.

Se se considerar a totalidade dos trinta provetes dos dois tipos de granitos empregues na Igreja Matriz de Caminha, verifica-se uma melhor relação entre os valores do tempo em que a saturação crítica é atingida ($t(S_c)$) e a porosidade livre às quarenta e oito horas ($N_{48} = 0,0420 \times t(S_c) + 2,2868 \text{ com } r^2 = 0,8343 - Figura 2.54$).

Figura 2.54 Correlação linear entre os valores de N₄₈ e t(S_c) obtidos nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha.

Begonha (2001) obteve a correlação de tipo logarítmica $N_{48} = -4,1124 + 2,8302 \times \ln t(S_c) \operatorname{com} r^2 = 0,956$ entre os valores da porosidade livre às quarenta e oito horas e o instante em que a saturação crítica é atingida em provetes de granito do Porto.

Relativamente às correlações obtidas entre o coeficiente de capilaridade A e o tempo em que a saturação crítica é atingida ($t(S_c)$), nos dezoito provetes de granito de duas micas de grão médio, verifica-se que A aumenta linearmente com $t(S_c)$ com A = 0,0051 x $t(S_c)$ + 0,0885, tendo sido obtido um coeficiente de correlação relativamente baixo: r^2 = 0,7064 (Figura 2.55).

Figura 2.55 Correlação linear entre os valores de A e t(S_c) obtidos nos provetes de granito de grão médio da Igreja Matriz de Caminha.

Nos doze provetes de microgranito de duas micas, não se obteve uma boa correlação linear entre o coeficiente de capilaridade A e o tempo em que a saturação crítica é atingida (A = -0,0002 x t(S_c) + 0,2251 com r^2 = 0,0011) em virtude de os valores dos dois parâmetros serem bastante próximos no conjunto dos doze provetes.

Se se considerar a totalidade dos trinta provetes dos dois tipos de granitos empregues na Igreja Matriz de Caminha, verifica-se uma melhor relação entre os valores do tempo em que a saturação crítica é atingida (t(S_c)) e o coeficiente de capilaridade A (A = 2 x 10^{-5} x t(S_c)² + 0,0012 x t(S_c) + 0,1301 com r² = 0,8146 - Figura 2.56)).

Figura 2.56 Correlação polinomial entre os valores de A e t(S_c) obtidos nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha.

Begonha (2001) obteve a correlação de tipo exponencial A = 0,01159 x $t(S_c)^{0,7701}$ com r^2 = 0,9030 entre os valores do coeficiente de capilaridade A e o instante em que a saturação crítica é atingida, para o granito do Porto.

As correlações entre o instante em que a saturação crítica é atingida ($t(S_c)$) e o coeficiente de capilaridade B e entre o coeficiente de capilaridade B e a saturação crítica (S_c), no conjunto dos trinta provetes em estudo, têm coeficientes de correlação muito baixos e de valores semelhantes: $r^2=0,0004$.

2.4.5.2 Depois da aplicação dos produtos de tratamento

No Quadro 2.38, apresentam-se os valores do fluxo de evaporação constante q_T ; da saturação crítica S_{cT} e do instante $t(S_{cT})$ em que a saturação crítica é atingida, obtidos no ensaio de evaporação realizado nos trinta provetes cilíndricos da Igreja Matriz de Caminha em que se aplicaram os dois produtos hidrófugos e os dois produtos consolidantes. Apresentam-se, no Anexo 2, os resultados obtidos nos trinta provetes.

Tipo de	Tratamento	Provete	q _τ	S _{cT}	t(S _{cT})
granito	Tratamento	cilíndrico	(g×cm ⁻² ×h ⁻¹)	(%)	(h)
		IMC 1.1	-0,0004	16	699,4
		IMC 1.4	-0,0004	21	699,4
	Sikagard	IMC 2.1	-0,0004	14	842,1
	Sikayalu	IMC 4.2	-0,0003	18	699,3
		IMC 4.3	-0,0004	21	530,0
		IMC 5.2	-0,0003	8	699,2
Granito de		IMC 1.2	-0,0003	36	841,8
		IMC 1.3	-0,0003	10	1010,5
	Cilikor	IMC 2.2	-0,0004	58	529,8
duas micas de grão médio	Siliker	IMC 4.1	-0,0003	12	841,7
<u>j</u>		IMC 4.4	-0,0003	25	529,7
		IMC 5.1	-0,0003	26	632,0
		IMC 2.3	-0,0032	60	57,9
	Tegovakon V	IMC 3.1	-0,0025	60	48,1
		IMC 5.3	-0,0026	70	34,2
		IMC 2.4	-0,0028	58	70,4
	S 41	IMC 3.2	-0,0033	64	34,6
		IMC 5.4	-0,0029	78	22,3
		IMC 6.1	-0,0039	84	8,5
		IMC 6.3	-0,0045	80	8,4
	Togovakan V	IMC 7.2	-0,0036	62	21,9
		IMC 8.2	-0,0032	66	21,8
		IMC 9.1	-0,0033	67	21,8
Microgranito de		IMC 9.3	-0,0031	66	21,8
duas micas		IMC 6.2	-0,0022	63	34,5
		IMC 7.1	-0,0025	62	34,5
	C /1	IMC 7.3	-0,0029	67	22,4
	5 41	IMC 8.1	-0,0038	62	22,1
		IMC 8.3	-0,0032	66	22,1
		IMC 9.2	-0,0043	82	8,6

Quadro 2.38 Resultados dos ensaios de evaporação obtidos nos provetes cilíndricos após os tratamentos.

Nas Figuras 2.57 a 2.60, encontram-se representados os gráficos correspondentes ao ensaio de evaporação realizado nos provetes IMC 2.1T e IMC 2.2T de granito de grão médio, respectivamente tratados com os produtos hidrófugos Sikagard e Siliker e nos provetes IMC 6.1T e IMC 7.1T de microgranito, respectivamente tratados com os produtos consolidantes Tegovakon V e HMK S 41.

Figura 2.57 Diagrama do ensaio de evaporação – provete IMC 2.1T de granito de duas micas de grão médio (tratado com o produto hidrófugo Sikagard).

Figura 2.58 Diagrama do ensaio de evaporação – provete IMC 2.2T de granito de duas micas de grão médio (tratado com o produto hidrófugo Siliker).

Figura 2.59 Diagrama do ensaio de evaporação – provete IMC 6.1E de microgranito de duas micas (tratado com o consolidante Tegovakon V).

Figura 2.60 Diagrama do ensaio de evaporação – provete IMC 7.1T de microgranito de duas micas (tratado com o consolidante HMK S 41).

O Quadro 2.38 mostra que, no granito de duas micas de grão médio, o fluxo de evaporação constante (q_T) varia entre -0,0003 g×cm⁻²×h⁻¹ e -0,0004 g×cm⁻²×h⁻¹ depois da aplicação, tanto do produto

hidrófugo Sikagard como do produto hidrófugo Siliker. Neste mesmo tipo de granito, e após a aplicação do produto consolidante Tegovakon V ou do produto consolidante S 41, a variação do fluxo de evaporação constante (q_T) está compreendida, respectivamente, entre -0,0025 g×cm⁻²×h⁻¹ e - 0,0032 g×cm⁻²×h⁻¹ e entre -0,0028 g×cm⁻²×h⁻¹ e -0,0033 g×cm⁻²×h⁻¹.

No que concerne ao microgranito de duas micas, os valores obtidos para o fluxo de evaporação constante (q_T) variam entre -0,0031 g×cm⁻²×h⁻¹ e -0,0045 g×cm⁻²×h⁻¹ nos provetes consolidados com o produto Tegovakon V e entre -0,0022 g×cm⁻²×h⁻¹ e -0,0043 g×cm⁻²×h⁻¹ nos provetes tratados com o consolidante S41.

No granito de duas micas de grão médio, os valores obtidos para a saturação crítica (S_{cT}) variam entre 8% e 21% nos provetes tratados com o hidrófugo Sikagard, entre 12% e 58% nos provetes tratados com o produto hidrófugo Siliker, entre 60% e 70% nos provetes tratados com o consolidante Tegovakon V e entre 58% e 78% nos provetes tratados com o consolidante S41.

Relativamente ao microgranito de duas micas, os valores obtidos para a saturação crítica (S_{cT}) variam entre 62% e 84% nos provetes consolidados com o produto Tegovakon V e entre 62% e 82% nos provetes tratados com o consolidante S 41.

O instante em que a saturação crítica é atingida ($t(S_{cT})$), varia significativamente de provete para provete, sendo que, para o caso dos provetes de granito de duas micas de grão médio tratados com um dos produtos hidrófugos Sikagard ou Siliker, este valor está compreendido entre as 530,0 h e as 699,4 h. e entre as 529,7 h e 1010,5 h, respectivamente. Nos provetes de granito de grão médio tratados com os produtos consolidantes Tegovakon V ou S 41, o instante em que a saturação crítica é atingida ($t(S_{cT})$) varia, respectivamente, entre as 34,2 h e as 57,9 h e entre as 22,3 h e as 70,4 h.

No caso do microgranito de duas micas, o instante em que a saturação crítica é atingida ($t(S_{cT})$) varia, no caso dos provetes consolidados com o produto Tegovakon V, entre as 8,4 h e as 21,9 h e entre as 8,6 h e as 34,5 h nos tratados com o produto S 41.

No Quadro 2.39, mostram-se, conforme o tipo de tratamento, os valores do fluxo de evaporação antes (q) e após (q_T) a aplicação dos produtos de tratamento, bem como as variações percentuais médias (Δ_{qT}) para cada provete, para cada produto individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os produtos consolidantes na sua globalidade (Tegovakon V e S 41). A variação percentual de cada provete (Quadro 2.39, coluna 5) obteve-se pela equação:

$$\Delta_{qT} = 100 \text{ x } (q_T - q)/q \qquad (2.44)$$

Tratamento	Provete	q (g×cm ⁻² ×h ⁻¹)	q _T g×cm ⁻² ×h ⁻¹)	Δ _{qT} (%)	Δ _{qT} (%)	Δ _{qT} (%)
	IMC 1.1	-0,0027	-0,0004	-85,19		
	IMC 1.4	-0,0019	-0,0004	-78,95		
Cilia agud	IMC 2.1	-0,0018	-0,0004	-77,78	00.01.2.0	
Sikayaru	IMC 4.2	-0,0016	-0,0003	-81,25	-80,9±2,9	
	IMC 4.3	-0,0019	-0,0004	-78,95		
	IMC 5.2	-0,0018	-0,0003	-83,33		
	IMC 1.2	-0,0021	-0,0003	-85,71		-82,2±2,6
	IMC 1.3	-0,0020	-0,0003	-85,00		
Cilikon	IMC 2.2	-0,0021	-0,0004	-80,95	-83 4+1 7	
Sliker	IMC 4.1	-0,0018	-0,0003	-83,33	-83,4±1,7	
	IMC 4.4	-0,0018	-0,0003	-83,33		
	IMC 5.1	-0,0017	-0,0003	-82,35		
	IMC 2.3	-0,0030	-0,0032	6,67		
	IMC 3.1	-0,0023	-0,0025	8,70		
	IMC 5.3	-0,0016	-0,0026	62,50		
	IMC 6.1	-0,0031	-0,0039	25,81	40,2±29,5	
Tegovakon V	IMC 6.3	-0,0023	-0,0045	95,65		
	IMC 7.2	-0,0025	-0,0036	44,00		
	IMC 8.2	-0,0020	-0,0032	60,00		
	IMC 9.1	-0,0023	-0,0033	43,48		
	IMC 9.3	-0,0027	-0,0031	14,81		26 2 4 22 6
	IMC 2.4	-0,0024	-0,0028	16,67		36,2±32,6
	IMC 3.2	-0,0022	-0,0033	50,00		
	IMC 5.4	-0,0015	-0,0029	93,33		
	IMC 6.2	-0,0029	-0,0023	-20,69		
S 41	IMC 7.1	-0,0026	-0,0026	0,00	32,2±36,8	
	IMC 7.3	-0,0021	-0,0029	38,10		
	IMC 8.1	-0,0027	-0,0038	40,74		
	IMC 8.3	-0,0032	-0,0032	0,00		
	IMC 9.2	-0,0025	-0,0043	72,00]	

Quadro 2.39 Valores do fluxo de evaporação antes (q) e depois (q_T) da aplicação dos tratamentos; variação percentual média (Δ_{qT}) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

A coluna 6 do mesmo quadro apresenta a média e o respectivo desvio padrão das variações percentuais do fluxo de evaporação (Δ_{qT}) nos provetes em que foi aplicado cada tipo de produto de tratamento.

A coluna 7 do Quadro 2.39 apresenta a média e respectivo desvio padrão das variações do fluxo de evaporação (Δ_{qT}) nos doze provetes em que foi aplicado um dos dois hidrófugos (Sikagard ou Siliker) e a média e respectivo desvio padrão nos dezoito provetes em que foi aplicado um dos dois consolidantes (Tegovakon Vou S 41).

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos 6 provetes tratados com o produto hidrófugo HB Siliker S 101, o fluxo de evaporação apresenta uma redução média significativa de, respectivamente, cerca de 81% e de 83% relativamente aos valores que apresentava antes do tratamento.

Nos nove provetes tratados com o produto consolidante Tegovakon V, o fluxo de evaporação aumentou em média, cerca de 40% e nos nove provetes tratados com o produto consolidante HMK S 41 o fluxo de evaporação q também apresenta um aumento, mas neste caso de cerca de 32%, relativamente aos valores que apresentavam antes do tratamento. Verifica-se, portanto, que não há uma grande dispersão de resultados nos valores obtidos para os dois tipos de hidrófugos e para os dois tipos de consolidantes.

Para o conjunto dos dois hidrófugos e para o conjunto dos dois consolidantes, obteve-se, respectivamente, uma diminuição de cerca de 82% e um aumento de cerca de 36% da variação do fluxo de evaporação antes e após a aplicação dos produtos de tratamento

O Quadro 2.40 mostra, para cada provete, os valores da saturação crítica antes (S_c) e após (S_{cT}) a aplicação dos produtos de tratamento, bem como as variações percentuais médias (ΔS_{cT}) para cada provete, para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S 41).

Os valores das colunas 5, 6 e 7 deste quadro foram calculados do mesmo modo que as colunas correspondentes do Quadro 2.39.

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, verificou-se, respectivamente, uma redução de cerca de 56% e de 48% do valor da saturação crítica após a aplicação dos produtos de tratamento.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o valor da saturação crítica aumentou em média, depois da aplicação dos produtos de tratamento, respectivamente cerca de 70% e 60% comparativamente aos valores que apresentava antes do tratamento.

119

Tratamento	Provete	S _c (%)	S _{ст} (%)	ΔS _{cT} (%)	ΔS _{cT} (%)	ΔS _{cT} (%)
	IMC 1.1	41	16	-60,98		
	IMC 1.4	31	21	-32,26		
Cilia aquid	IMC 2.1	35	14	-60,00		
Sikagard	IMC 4.2	41	18	-56,10	55,9±16,0	
	IMC 4.3	39	21	-46,15		
	IMC 5.2	40	8	-80,00		F1 7 10 0
	IMC 1.2	31	17	-45,16		-51,/±18,9
	IMC 1.3	37	10	-72,97		
Cililian	IMC 2.2	29	24	-17,24	47 5 1 22 1	
Siliker	IMC 4.1	45	12	-73,33	47,5±22,1	
	IMC 4.4	38	25	-34,21		
	IMC 5.1	45	26	-42,22		
	IMC 2.3	31	60	93,55		
	IMC 3.1	40	60	50,00		
	IMC 5.3	34	70	105,88		
	IMC 6.1	55	84	52,73	69,6±24,8	
Tegovakon V	IMC 6.3	43	80	86,05		
	IMC 7.2	48	62	29,17		
	IMC 8.2	36	66	83,33		
	IMC 9.1	39	67	71,79		
	IMC 9.3	43	66	53,49		(F 0 - 24 F
	IMC 2.4	30	58	93,33		65,0±24,5
	IMC 3.2	40	64	60,00		
	IMC 5.4	40	78	95,00		
	IMC 6.2	52	74	42,31		
S 41	IMC 7.1	42	73	73,81	60,4±24,8	
	IMC 7.3	52	67	28,85		
	IMC 8.1	39	62	58,97		
	IMC 8.3	52	66	26,92	1	
	IMC 9.2	50	82	64,00	1	

Quadro 2.40 Valores da saturação crítica antes (S_c) e após (S_{cT}) a aplicação dos tratamentos; variação percentual média (ΔS_{cT}) em cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Para o conjunto dos dois hidrófugos e para o conjunto dos dois consolidantes, obteve-se, respectivamente, uma diminuição de cerca de 52% e um aumento de cerca de 65% da variação da saturação crítica antes e após a aplicação dos produtos de tratamento.

O Quadro 2.41 mostra, para cada provete, os valores do tempo em que a saturação crítica é atingida antes ($t(S_c)$) e após ($t(S_{cT})$) a aplicação dos produtos de tratamento, bem como as variações percentuais médias ($\Delta t(S_{cT})$) para cada provete, para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S 41).

Tratamento	Provete	t(S _c) (h)	t(S _{cT}) (h)	Δt(S _{cT}) (%)	Δt(S _{cT}) (%)	Δt(S _{cT}) (%)
	IMC 1.1	81,3	699,4	760,27		
	IMC 1.4	155,3	699,4	350,35		
Cilve read	IMC 2.1	175,8	842,1	379,01		
Sikagard	IMC 4.2	94,8	699,3	637,66	553,5,0±160,5	
	IMC 4.3	80,9	530,0	555,13		
	IMC 5.2	94,7	699,2	638,33		F02 2 171 2
	IMC 1.2	129,4	841,8	550,54		592,2±1/1,2
	IMC 1.3	129,4	1010,5	680,91		
Cilikon	IMC 2.2	175,7	841,8	379,11	620.0 1 107.5	
Siliker	IMC 4.1	81,0	841,7	939,14	039,9±187,5	
	IMC 4.4	80,9	529,7	554,76		
	IMC 5.1	80,9	632,0	681,21		
	IMC 2.3	129,3	57,9	-55,22		
	IMC 3.1	72,2	48,1	-33,38		
	IMC 5.3	120,9	34,2	-71,71		
	IMC 6.1	32,4	8,5	-73,77		
Tegovakon V	IMC 6.3	50,8	8,4	-83,46	-60,1±40,9	
	IMC 7.2	45,1	21,9	-51,44		
	IMC 8.2	50,6	21,8	-56,92		
	IMC 9.1	59,8	21,8	-63,55		
	IMC 9.3	44,9	21,8	-51,45		-57 9±16 1
	IMC 2.4	155,2	70,4	-54,64		-57,8±10,1
	IMC 3.2	81,0	34,6	-57,28		
	IMC 5.4	120,9	22,3	-81,56		
	IMC 6.2	32,3	22,3	-30,96		
S 41	IMC 7.1	50,7	22,2	-56,21	-55,5±17,8	
	IMC 7.3	45,1	22,4	-50,33		
	IMC 8.1	50,7	22,1	-56,41		
	IMC 8.3	32,1	22,1	-31,15		
-	IMC 9.2	44,9	8,6	-80,85		

Quadro 2.41 Valores do tempo em que a saturação crítica é antigida antes (S_c) e após (S_{cT}) a aplicação dos tratamentos; variação percentual média ($\Delta t(S_{cT})$) em cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

Os valores das colunas 5, 6 e 7 deste quadro foram calculados de modo igual ao das colunas correspondentes no Quadro 2.40.

Através da análise do Quadro 2.41, verifica-se que, nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, o tempo em que a saturação crítica é atingida aumentou, respectivamente 5,5 vezes e 6,4 vezes relativamente aos valores que apresentava antes do tratamento.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o tempo em que a saturação crítica é atingida reduziu-se, respectivamente, em cerca de 60% e 56% relativamente aos valores que apresentava antes do tratamento.

Para o conjunto dos dois hidrófugos (Sikagard e Siliker) e para o conjunto dos dois consolidantes (Tegovakon V e S 41), obteve-se, respectivamente, um aumento de 5,9 vezes e uma diminuição de cerca de 58% do instante em que a saturação crítica é atingida antes e após a aplicação dos produtos de tratamento

2.4.5.3 Após ensaio de envelhecimento acelerado

No Quadro 2.42, apresentam-se os valores do fluxo de evaporação constante q_E , da saturação crítica S_{cE} e do instante $t(S_{cE})$ em que a saturação crítica é atingida no ensaio de evaporação realizado nos trinta provetes cilíndricos após a aplicação dos produtos de tratamento e de terem sido submetidos a ensaios de envelhecimento. Mostram-se, no Anexo 2, os resultados obtidos nos trinta provetes.

No granito de duas micas de grão médio, o fluxo de evaporação (q_E), após os ensaios de envelhecimento, é constante e igual a -0,0002 g×cm⁻²×h⁻¹ nos provetes tratados, tanto com o produto hidrófugo Sikagard como com o produto hidrófugo Siliker. Neste mesmo tipo de granito e após os provetes estarem sujeitos à aplicação de um dos produtos consolidantes (Tegovakon V ou S 41) e aos ensaios de envelhecimento, a variação do fluxo de evaporação constante (q_E) está compreendido, respectivamente, entre -0,0016 g×cm⁻²×h⁻¹ e -0,0021 g×cm⁻²×h⁻¹ e entre -0,0014 g×cm⁻²×h⁻¹ e -0,0020 g×cm⁻²×h⁻¹.

Tipo de granito	Tratamento	Provete cilíndrico	q _€ (g×cm ⁻² ×h ⁻¹)	S _{cE} (%)	t(S _{c E}) (h)
		IMC 1.1	-0,0002	41	982,4
		IMC 1.4	-0,0002	17	1439,5
	Sikagard	IMC 2.1	-0,0002	12	1535,0
	Sikayalu	IMC 4.2	-0,0002	18	1080,4
		IMC 4.3	-0,0002	13	935,6
		IMC 5.2	-0,0002	13	1130,1
		IMC 1.2	-0,0002	13	1439,9
		IMC 1.3	-0,0002	13	1606,2
Granito de	Silikor	IMC 2.2	-0,0002	8	1728,5
grão médio	JIIKEI	IMC 4.1	-0,0002	24	1176,9
		IMC 4.4	-0,0002	22	842,4
		IMC 5.1	-0,0002	16	1130,7
		IMC 2.3	-0,0021	48	118,9
	Tegovakon V	IMC 3.1	-0,0018	56	72,7
		IMC 5.3	-0,0016	44	103,2
		IMC 2.4	-0,0020	48	119,2
	S 41	IMC 3.2	-0,0014	52	103,4
		IMC 5.4	-0,0015	50	103,4
		IMC 6.1	-0,0029	65	24,5
		IMC 6.3	-0,0017	71	32,8
	Tegovakon V	IMC 7.2	-0,0016	63	47,0
		IMC 8.2	-0,0019	67	32,7
		IMC 9.1	-0,0018	72	32,7
Microgranito de		IMC 9.3	-0,0019	76	24,4
duas micas		IMC 6.2	-0,0018	60	47,5
		IMC 7.1	-0,0013	57	72,9
	ς <u>4</u> 1	IMC 7.3	-0,0014	76	33,2
	5 11	IMC 8.1	-0,0026	61	33,0
		IMC 8.3	-0,0019	77	24,8
		IMC 9.2	-0,0020	69	33,0

Quadro 2.42 Resultados do ensaio de evaporação obtidos nos provetes cilíndricos tratados após os ensaios de envelhecimento.

No que concerne ao microgranito de duas micas, os valores obtidos para o fluxo de evaporação constante (q_E) variam entre -0,0016 g×cm⁻²×h⁻¹ e -0,0029 g×cm⁻²×h⁻¹ nos provetes consolidados com o produto Tegovakon V e entre -0,0013 g×cm⁻²×h⁻¹ e -0,0026 g×cm⁻²×h⁻¹ nos provetes tratados com o consolidante S 41.

No granito de duas micas de grão médio, os valores obtidos para a saturação crítica (S_{cE}), após a realização dos ensaios de envelhecimento acelerado, variam entre 12% e 41% nos provetes tratados com o hidrófugo Sikagard, entre 8% e 24% nos provetes tratados com o produto hidrófugo SiliKer, entre 44% e 56% nos provetes tratados com o consolidante Tegovakon V e entre 48% e 52% nos provetes tratados com o consolidante S 41.

Relativamente ao microgranito de duas micas, a variação dos valores obtidos para a saturação crítica (S_{CE}) , após a realização dos ensaios de envelhecimento, está compreendida entre 63% e 76% nos provetes consolidados com o produto Tegovakon V e entre 57% e 77% nos provetes tratados com o consolidante S 41.

O instante em que a saturação crítica é atingida ($t(S_{cE})$), varia significativamente de provete para provete, sendo que, para o caso dos provetes de granito de duas micas de grão médio tratados com um dos produtos hidrófugos Sikagard ou Siliker e submetidos a ensaios de envelhecimento, este valor está compreendido entre as 935,6 h e as 1535,0 h e entre as 842,4 h e as 1728,5 h, respectivamente. Nos provetes de granito de grão médio tratados com os produtos consolidantes Tegovakon V ou S 41, o instante em que a saturação crítica é atingida ($t(S_{cE})$) varia, respectivamente, entre as 72,7 h e as 118,9 h e entre as 103,4 h e as 119,2 h.

No que concerne ao microgranito de duas micas, o instante em que a saturação crítica é atingida $(t(S_{cE}))$ varia, no caso dos provetes consolidados com o produto Tegovakon V e sujeitos a ensaios de envelhecimento, entre as 24,4 h e as 47,0 h e no caso dos provetes consolidados com o produto S 41 entre as 24,8 h e as 72,9 h.

Nas Figuras 2.61 a 2.64, encontram-se representados os gráficos correspondentes ao ensaio de evaporação realizado nos provetes IMC 1.1E e IMC 5.1E de granito de duas micas de grão médio, respectivamente tratados com os produtos hidrófugos Sikagard e Siliker e nos provetes IMC 6.3E e IMC 2.4E de microgranito de duas micas, respectivamente tratados com os produtos consolidantes Tegovakon e HMK S 41.

No Quadro 2.43, mostram-se, para cada provete, os valores do fluxo de evaporação constante antes (q_T) e após (q_E) a realização dos ensaios de envelhecimento, bem como as variações percentuais médias (Δq_E) para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S 41).

Figura 2.61 Diagrama do ensaio de evaporação – provete IMC 1.1E de granito de duas micas de grão médio (tratado com o produto hidrófugo Sikagard e após envelhecimento).

Figura 2.62 Diagrama do ensaio de evaporação – provete IMC 5.1E de granito de duas micas de grão médio (tratado com o produto hidrófugo Siliker e após envelhecimento).

Figura 2.63 Diagrama do ensaio de evaporação – provete IMC 6.3E de microgranito de duas micas (tratado com o consolidante Tegovakon V e após envelhecimento).

Figura 2.64 Diagrama do ensaio de evaporação – provete IMC 2.4E de microgranito de duas micas (tratado com o consolidante HMK S 41 e após envelhecimento).

Tratamento	Provete	q _T (g×cm ⁻² ×h ⁻¹)	q _€ (g×cm ⁻² ×h ⁻¹)	Δq _ε (%)	Δq _ε (%)	Δq _ε (%)
	IMC 1.1	-0,0004	-0,0002	-50,00		
	IMC 1.4	-0,0004	-0,0002	-50,00		
Sikagard	IMC 2.1	-0,0004	-0,0002	-50,00	11 1+9 C	
Sikayaru	IMC 4.2	-0,0003	-0,0002	-33,33	-44,4±8,0	
	IMC 4.3	-0,0004	-0,0002	-50,00		
	IMC 5.2	-0,0003	-0,0002	-33,33		40 2±0 6
	IMC 1.2	-0,0003	-0,0002	-33,33		-40,3±0,0
	IMC 1.3	-0,0003	-0,0002	-33,33		
Silikor	IMC 2.2	-0,0004	-0,0002	-50,00	-31,1±6,8	
SIIKEI	IMC 4.1	-0,0003	-0,0002	-33,33		
	IMC 4.4	-0,0003	-0,0002	-33,33		
	IMC 5.1	-0,0003	-0,0002	-33,33		
	IMC 2.3	-0,0032	-0,0021	-34,38		
	IMC 3.1	-0,0025	-0,0018	-28,00		
	IMC 5.3	-0,0026	-0,0016	-38,46		
	IMC 6.1	-0,0039	-0,0029	-25,64	-41,0±12,0	
Tegovakon V	IMC 6.3	-0,0045	-0,0017	-62,22		
	IMC 7.2	-0,0036	-0,0016	-55,56		
	IMC 8.2	-0,0032	-0,0019	-40,63		
	IMC 9.1	-0,0033	-0,0018	-45,45		
	IMC 9.3	-0,0031	-0,0019	-38,71		_/1 9±11 0
	IMC 2.4	-0,0028	-0,0020	-28,57		-41,0±11,9
	IMC 3.2	-0,0033	-0,0014	-57,58		
	IMC 5.4	-0,0029	-0,0015	-48,28		
	IMC 6.2	-0,0023	-0,0018	-21,74		
S 41	IMC 7.1	-0,0026	-0,0013	-50,00	-42,6±12,6	
	IMC 7.3	-0,0029	-0,0014	-51,72		
	IMC 8.1	-0,0038	-0,0026	-31,58		
	IMC 8.3	-0,0032	-0,0019	-40,63		
	IMC 9.2	-0,0043	-0,0020	-53,49		

Quadro 2.43 Valores do fluxo de evaporação antes (q_T) e após (q_E) os ensaios de envelhecimento; variação percentual média (Δq_E) para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

A variação do fluxo de evaporação q_E de cada provete, após os ensaios de envelhecimento, relativamente ao valor antes da realização dos mesmos (q_T) (Quadro 2.43, coluna 5) obteve-se pela seguinte equação:

$$\Delta q_{\rm E} = 100 \times (q_{\rm E} - q_{\rm T})/q_{\rm T} \tag{2.45}$$

A coluna 6 apresenta a média e o respectivo desvio padrão das variações percentuais do fluxo de evaporação (Δq_E) nos provetes em que foi aplicado cada um dos quatro tipos de produtos de tratamento.

A coluna 7 do mesmo quadro apresenta a média e respectivo desvio padrão das variações do fluxo de evaporação (Δq_E), após a execução dos ensaios de envelhecimento nos doze provetes em que foi aplicado um dos dois hidrófugos (Sikagard ou Siliker) e a média e respectivo desvio padrão nos dezoito provetes em que foi aplicado um dos dois consolidantes (Tegovakon V ou S 41).

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos 6 provetes tratados com o produto hidrófugo HB Siliker S 101, o fluxo de evaporação reduziu-se em média, respectivamente, cerca de 44% e de 31% relativamente aos valores que apresentava antes do envelhecimento.

Nos provetes tratados com o produto consolidante Tegovakon V, o fluxo de evaporação diminuiu em média cerca de 41% e nos provetes tratados com o produto consolidante HMK S 41 o fluxo de evaporação reduziu-se em cerca de 43%, relativamente aos valores que apresentava antes do envelhecimento.

No conjunto dos doze provetes tratados com os produtos hidrófugos (Sikagard e Siliker) e no conjunto dos dezoito provetes tratados com os produtos consolidantes (Tegovakon V e S 41), o fluxo de evaporação, após os ensaios de envelhecimento, diminuiu, respectivamente, em cerca de 40% e 42%, relativamente aos valores que apresentava antes destes ensaios.

O Quadro 2.44 mostra, para cada provete, os valores da saturação crítica antes (S_{cT}) e após (S_{cE}) os ensaios de envelhecimento, bem como as variações médias (ΔS_{cE}) para cada provete, para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon V e S 41).

Os valores das colunas 5, 6 e 7 deste quadro foram calculados do mesmo modo que o das colunas correspondentes no Quadro 2.43.

Tratamento	Provete	S _{ст} (%)	S _{cE} (%)	ΔS _{cE} (%)	ΔS _{cE} (%)	ΔS _{cE} (%)
	IMC 1.1	16,00	41,00	156,25		
	IMC 1.4	21,00	17,00	-19,05		
Cilcogord	IMC 2.1	14,00	12,00	-14,29	24 6 1 72 1	
Sikayaru	IMC 4.2	18,00	18,00	0,00	24,0±73,1	
	IMC 4.3	21,00	13,00	-38,10		11 41 64 0
	IMC 5.2	8,00	13,00	62,50		
	IMC 1.2	17,00	13,00	-23,53		11,4±64,9
	IMC 1.3	10,00	13,00	30,00		
Cililian	IMC 2.2	24,00	8,00	-66,67	1.0.50.2	
Siliker	IMC 4.1	12,00	24,00	100,00	-1,8±59,2	
	IMC 4.4	25,00	22,00	-12,00		
	IMC 5.1	26,00	16,00	-38,46		
	IMC 2.3	60,00	48,00	-20,00		
	IMC 3.1	60,00	56,00	-6,67		
	IMC 5.3	70,00	44,00	-37,14		
	IMC 6.1	84,00	65,00	-22,62	-8,0±16,5	
Tegovakon V	IMC 6.3	80,00	71,00	-11,25		
	IMC 7.2	62,00	63,00	1,61		
	IMC 8.2	66,00	67,00	1,52		
	IMC 9.1	67,00	72,00	7,46		
	IMC 9.3	66,00	76,00	15,15		
	IMC 2.4	58,00	48,00	-17,24		-9,0±10,4
	IMC 3.2	64,00	52,00	-18,75		
	IMC 5.4	78,00	50,00	-35,90		
	IMC 6.2	74,00	60,00	-18,92		
S 41	IMC 7.1	73,00	57,00	-21,92	-11,1±17,2	
	IMC 7.3	67,00	76,00	13,43		
	IMC 8.1	62,00	61,00	-1,61]	
	IMC 8.3	66,00	77,00	16,67		
	IMC 9.2	82,00	69,00	-15,85		

Quadro 2.44 Valores da saturação crítica antes (S_{cT}) e depois (S_{cE}) da realização dos ensaios de envelhecimento; variação percentual média (ΔS_{cE}) para cada provete, para cada produto de tratamento, para o conjunto dos dois hidrófugos e para o conjunto dos dois consolidantes.

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S, o valor da saturação crítica aumentou em cerca de 25 % e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, o valor da saturação crítica apresentou uma ligeira diminuição de 2%. Estes resultados foram obtidos

nos provetes sujeitos a ensaios de envelhecimento comparativamente com os valores que apresentavam após a aplicação dos produtos de tratamento.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o valor da saturação crítica diminui em média ligeiramente, depois da realização dos ensaios de envelhecimento, respectivamente cerca de 8% e 11 % comparativamente aos valores que apresentava antes do envelhecimento.

No conjunto dos doze provetes tratados com os produtos hidrófugos (Sikagard e Siliker) o valor da saturação crítica, após os ensaios de envelhecimento, aumentou cerca de 11% relativamente aos valores que apresentava após a aplicação dos produtos de tratamento. No conjunto dos dezoito provetes tratados com os produtos consolidantes (Tegovakon V e S 41), o valor da saturação crítica, após os ensaios de envelhecimento, reduziu-se em cerca de 10% relativamente aos valores que apresentava antes destes ensaios.

O Quadro 2.45 mostra, para cada provete, os valores do tempo em que a saturação crítica é atingida antes $(t(S_{cT}))$ e após $(t(S_{cE}))$ os ensaios de envelhecimento, bem como as variações percentuais médias $(\Delta t(S_{cE}))$ para cada provete, para cada produto de tratamento individualmente, para os produtos hidrófugos no seu conjunto (Sikagard e Siliker) e para os dois produtos consolidantes (Tegovakon e S 41).

Os valores das colunas 5, 6 e 7 deste quadro foram calculados de modo igual ao das colunas correspondentes no Quadro 2.43.

Nos seis provetes tratados com o produto hidrófugo Sikagard 700 S e nos seis provetes tratados com o produto hidrófugo HB Siliker S 101, o tempo em que a saturação crítica é atingida aumentou, respectivamente 70% e 69% relativamente aos valores que apresentava antes dos ensaios de envelhecimento.

Nos nove provetes tratados com o produto consolidante Tegovakon V e nos nove provetes tratados com o produto consolidante HMK S 41, o tempo em que a saturação crítica é atingida aumentou, respectivamente, em cerca de 1,2 vezes e 1,5 vezes relativamente aos valores que apresentava antes da realização dos ensaios de envelhecimento.

130

Tratamento	Provete	t(S _{cT}) (h)	t(S _{cE}) (h)	Δt(S _{cE}) (%)	Δt(S _{cE}) (%)	Δt(S _{cE}) (%)
	IMC 1.1	699,4	982,4	40,46		
	IMC 1.4	699,4	1439,5	105,82		
Cilcogord	IMC 2.1	842,1	1535,0	82,28	70 2±22 1	
Sikayalu	IMC 4.2	699,3	1080,4	54,50	70,2±23,1	
	IMC 4.3	530,0	935,6	76,53		
	IMC 5.2	699,2	1130,1	61,63		
	IMC 1.2	841,8	1439,9	71,05		09,5±21,0
	IMC 1.3	1010,5	1606,2	58,95		
Cilikor	IMC 2.2	841,8	1728,5	105,33	69 0 1 22 2	
Siliker	IMC 4.1	841,7	1176,9	39,82	08,9±22,2	
	IMC 4.4	529,7	842,4	59,03		
	IMC 5.1	632,0	1130,7	78,91		
	IMC 2.3	57,9	118,9	105,35		
	IMC 3.1	48,1	72,7	51,14		
	IMC 5.3	34,2	103,2	201,75		
	IMC 6.1	8,5	24,5	188,24	118,2±91,4	
Tegovakon V	IMC 6.3	8,4	32,8	290,48		
	IMC 7.2	21,9	47,0	114,61		
	IMC 8.2	21,8	32,7	50,00		
	IMC 9.1	21,8	32,7	50,00		
	IMC 9.3	21,8	24,4	11,93		125 0±106 1
	IMC 2.4	70,4	119,2	69,32		155,0±100,1
	IMC 3.2	34,6	103,4	198,84		
	IMC 5.4	22,3	103,4	363,68		
	IMC 6.2	22,3	47,5	113,00		
S 41	IMC 7.1	22,2	72,9	228,38	151,9±122,2	
	IMC 7.3	22,4	33,2	48,21		
	IMC 8.1	22,1	33,0	49,32]	
	IMC 8.3	22,1	24,8	12,22]	
	IMC 9.2	8,6	33,0	283,72]	

Quadro 2.45 Valores do tempo em que a saturação crítica é antigida antes $(t(S_{cT}))$ e após $(t(S_{cE}))$ a realização dos ensaios de envelhecimento; variação percentual média de $(\Delta t(S_{cE}))$ para cada provete, produto de tratamento, conjunto dos dois hidrófugos e conjunto dos dois consolidantes.

No conjunto dos doze provetes tratados com os produtos hidrófugos (Sikagard e Siliker) e no conjunto dos dezoito provetes tratados com os produtos consolidantes (Tegovakon V e S 41), o tempo em que a saturação crítica á atingida, após os ensaios de envelhecimento, aumentou, respectivamente, em cerca de 70% e 135%, relativamente aos valores que apresentava antes destes ensaios.

2.4.6 Profundidade de penetração

A profundidade de penetração dos produtos consolidantes foi determinada por dois processos: por medição directa, no sentido longitudinal de cada provete de granito de grão médio e de microgranito, a partir da base em que foi aplicado o produto consolidante; por medição indirecta a partir dos resultados da ascensão da franja capilar no ensaio de absorção de água por capilaridade.

Diversos métodos são referidos na literatura na determinação da profundidade de penetração dos consolidantes. Leroux et al. (2000) compararam os seguintes métodos em rochas distintas: mudança de cor por aplicação de ditizona; molhagem da superfície dos provetes; tempo de absorção das microgotas; ataque diferencial pelo cloreto de hidrogénio; resistência à perfuração; velocidade de propagação dos ultra-sons. Estes autores verificaram que alguns dos métodos são mais eficazes em determinadas rochas do que em outras. Pinto e Delgado Rodrigues (2003) utilizaram o método do tempo de absorção das microgotas e da absorção de água sob baixa pressão, pelo método do cachimbo, para avaliar a eficácia de diferentes técnicas de aplicação de consolidantes. Begonha (2003a) utilizou, na determinação da profundidade de penetração em provetes de granito da Igreja de São Pedro de Rates, o método químico que se baseia no facto de a solução de tetracloreto de carbono (Cl_4C) saturada em 1,5 difeniltiocarbazona, também chamada ditizona $(C_{13}H_{12}N_4S)$, fixar o estanho do agente catalizador de várias resinas de silicones. De facto e segundo Leroux et al. (2000), a ditizona pode igualmente reagir com outros elementos como o manganês, ferro, cobalto, níquel, cobre, zinco, gálio, selénio, paládio, prata, cádmio, índio, telúrio, platina, ouro, mercúrio, chumbo, bismuto e polónio, podendo conduzir a testes positivos em rochas contendo quantidades apreciáveis de qualquer destes elementos. Aplicando este método às amostras dos dois produtos consolidantes, Begonha (2003a) constatou, efectivamente, que a solução saturada de ditizona de cor verde-garrafa adquiriu prontamente uma coloração rosa-acastanhada, o mesmo se verificando nas superfícies cortadas dos provetes onde os produtos consolidantes haviam penetrado.

No Quadro 2.46, mostram-se, conforme o tipo de consolidante aplicado, os valores da profundidade de penetração (P_p) para cada provete por medição directa da zona "molhada" e o valor médio da profundidade de penetração (P_{pm}) de cada produto consolidante em cada tipo de granito e no conjunto dos dois tipos de granito.

As colunas 5 e 6 do mesmo quadro apresentam ainda os desvios padrão obtidos, para além dos valores médios calculados da profundidade de penetração.

Nos provetes de granito de grão médio, tratados respectivamente com os produtos consolidantes Tegovakon V e S41, a média da profundidade de penetração é de 2,30 cm e 2,80 cm.

Quadro 2.46 Va	alores da profundidade de penetração para cada provete, profundidade de penetração
média (P _{pm})	de cada tipo de produto consolidante em cada tipo de granito e de cada produto
• •	consolidante considerando os dois tipos de granito no seu conjunto.

Produto consolidante aplicado	Tipo de granito	Provete cilíndrico	Profundidade de Penetração (cm)	P _{pm} (cm)	P _{pm} (cm)
	Granito de grão médio	IMC 2.3	3,20	2,30±0,8	1,90±0,5
		IMC 3.1	2,00		
		IMC 5.3	1,60		
	Microgranito de duas micas	IMC 6.1	1,80	1,80±0,2	
legovakon V		IMC 6.3	1,80		
		IMC 7.2	2,00		
		IMC 8.2	1,60		
		IMC 9.1	1,70		
		IMC 9.3	1,60		
5 41	Granito de grão médio	IMC 2.4	4,70		
		IMC 3.2	1,80	2,80 ± 1,7	
		IMC 5.4	1,80		
		IMC 6.2	1,80		
	Microgranito de duas micas	IMC 7.1	1,80	1,60 ± 0,2	2,00 ± 1,0
		IMC 7.3	1,80		
		IMC 8.1	1,50		
		IMC 8.3	1,50		
		IMC 9.2	1,40		

Nos provetes de microgranito tratados com os produtos consolidantes Tegovakon V e S41, a média da profundidade de penetração é de, respectivamente, 1,80 cm e 1,60 cm.

Os consolidantes Tegovakon V e S 41 apresentam, em média, nos dois tipos de granitos, uma profundidade de penetração, respectivamente de 1,90 cm e 2,00 cm. Não se verifica, portanto, uma variação significatica deste parâmetro, nos dois produtos consolidantes aplicados.

Por outro lado, o valor da profundidade de penetração por medição no gráfico do ensaio de absorção de água por capilaridade foi só obtido em nove provetes de microgranito de duas micas sujeitos ao tratamento com o produto consolidante, pois só nestes se verificou a variação de declive da curva da ascensão capilar. Através da análise deste gráfico, também se verifica que o primeiro troço da curva da franja capilar tem menor declive (B_T) do que o do segundo troço ($B1_T$), correspondendo à zona em que o consolidante penetrou no granito. O segundo troço compreenderá a zona dos provetes não consolidada.

O Quadro 2.47 apresenta os valores da profundidade de penetração dos produtos consolidantes, para cada provete e para cada tipo de medição efectuada.

Produto consolidante aplicado	Tipo de granito	Provete cilíndrico	P _p Medição directa (cm)	P _p Medição no gráfico (cm)
	Granito de grão médio	IMC 2.3	3,20	
		IMC 3.1	2,00	
		IMC 5.3	1,60	
		IMC 6.1	1,80	1,80
Tegovakon V		IMC 6.3	1,80	1,10
	Microgranito de duas micas	IMC 7.2	2,00	
		IMC 8.2	1,60	1,95
		IMC 9.1	1,70	0,85
		IMC 9.3	1,60	1,80
	Granito de grão médio	IMC 2.4	4,70	
S 41		IMC 3.2	1,80	
		IMC 5.4	1,80	
	Microgranito de duas micas	IMC 6.2	1,80	1,75
		IMC 7.1	1,80	
		IMC 7.3	1,80	
		IMC 8.1	1,50	1,60
		IMC 8.3	1,50	1,15
		IMC 9.2	1,40	1,35

Quadro 2.47 Valores da profundidade de penetração dos produtos consolidantes, para cada provete e para cada tipo de medição efectuada.

A coluna 5 do Quadro 2.47 mostra que, para os valores da profundidade de penetração obtidos através do gráfico do ensaio de absorção de água por capilaridade, o ponto de inflexão da curva correspondente à ascensão da franja capilar localiza-se entre 0,85 cm e 1,95 cm de altura nos nove provetes de microgranito de duas micas.

A figura a seguir apresentada (Figura 2.65) mostra a aproximação dos valores da profundidade de penetração obtidos pelos dois processos de medição para o conjunto dos nove provetes de microgranito de duas micas em que foi possível obter o valor da profundidade de penetração por medição no gráfico do ensaio de absorção de água por capilaridade.

Por observação da Figura 2.65, pode-se concluir que os valores da profundidade de penetração dos produtos consolidantes obtidos pelos dois processos são da mesma ordem de grandeza. Verifica-se porém, que os valores da profundidade de penetração obtidos em cada processo nos provetes IMC

6.3 e IMC 9.1 são um pouco distintos. No entanto, se considerarmos a totalidade dos cinco provetes de microgranito tratados com o consolidante Tegovakon V e o conjunto dos quatro provetes de microgranito tratados com o produto consolidante S 41, pode-se verificar que a profundidade de penetração média (P_{pm}) para os primeiros, por medição directa e por medição através do gráfico é de, respectivamente, 1,70 cm e 1,50 cm. A média do valor da profundidade de penetração (P_{pm}) para os quatro provetes de microgranito de duas micas tratados com o consolidante S 41, para os dois processos de medição atrás descritos é de 1,55 cm e de 1,46 cm, respectivamente. (Quadro 2.48 e 2.49).

Figura 2.65 Relação entre os valores da profundidade de penetração por medição directa e por medição no gráfico de absorção de água por capilaridade.

Quadro 2.48 Média dos valores da profundidade de penetração (P_{pm}) obtidos por medição directa para cada produto consolidante aplicado.

Produto consolidante aplicado	Tipo de granito	Provete cilíndrico	P _p Medição directa (cm)	P _{pm} (cm)
	Microgranito de duas micas	IMC 6.1	1,80	1,70±0,10
		IMC 6.3	1,80	
Tegovakon V		IMC 8.2	1,60	
		IMC 9.1	1,70	
		IMC 9.3	1,60	
S 41		IMC 6.2	1,80	
		IMC 8.1	1,50	1,55 ± 0,17
		IMC 8.3	1,50	
		IMC 9.2	1,40]

Produto consolidante aplicado	Tipo de granito	Provete cilíndrico	P _p Medição no gráfico (cm)	P _{pm} (cm)
Tegovakon V	Microgranito de duas micas	IMC 6.1	1,80	1,50±0,49
		IMC 6.3	1,10	
		IMC 8.2	1,95	
		IMC 9.1	0,85	
		IMC 9.3	1,80	
S 41		IMC 6.2	1,75	
		IMC 8.1	1,60	1,46 ± 0,27
		IMC 8.3	1,15	
		IMC 9.2	1,35	

Quadro 2.49 Média dos valores da profundidade de penetração (P_{pm}) obtidos por medição no gráfico do ensaio de absorção de água por capilaridade para cada produto consolidante aplicado.

Deste modo, em termos globais, os valores da profundidade de penetração obtidos pelos dois processos são muito aproximados pelo que, seguidamente, para o estudo deste parâmetro só se terá em consideração os valores obtidos da profundidade de penetração por medição directa, pois abrange todos os provetes consolidados.

Nos seis provetes de microgranito de duas micas sujeitos ao tratamento com o consolidante Tegovakon V e nos seis provetes de microgranito tratados com o consolidantes S 41, não se obtiveram boas correlações entre a profundidade de penetração e a porosidade livre às quarenta e oito horas ($r^2 = 0,3898$ e $r^2 = 0,1349$, respectivamente).

No entanto, se se considerarem os nove provetes sujeitos ao tratamento com o consolidante Tegovakon V, há uma aceitável correlação polinomial entre a profundidade de penetração e a porosidade livre às quarenta e oito horas: $N_{48} = 2,3641 \times P_p^2 - 7,8719 \times P_p + 11,1020$ com r² = 0,8553 (Figura 2.66).

Nos nove provetes dos dois tipos de granito tratados com o consolidante S 41, verifica-se a seguinte correlação logarítmica entre a profundidade de penetração e a porosidade livre às quarenta e oito horas: $N_{48} = 5,2422xLn (P_p)+2,0118 \text{ com } r^2 = 0,8644$ (Figura 2.67).

Não se determinou qualquer correlação, nem para o conjunto dos três provetes de granito de grão médio sujeitos ao tratamento com o consolidante Tegovakon V, nem para o conjunto dos valores dos três provetes de granito de grão médio sujeitos ao tratamento com o consolidante S 41, pois os resultados obtidos não seriam fiáveis devido ao pequeno número de valores existentes.

Figura 2.66 Correlação polinomial entre P_p e N₄₈ nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha, sujeitos a tratamento com o consolidante Tegovakon V.

Figura 2.67 Correlação obtida entre P_p e N₄₈ nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha, sujeitos a tratamento com o consolidante S 41.

Nos seis provetes de microgranito de duas micas sujeitos ao tratamento com o consolidante Tegovakon V, não se obteve uma boa correlação entre a profundidade de penetração e o coeficiente de capilaridade A ($r^2=0,5978$).

137
No que concerne aos seis provetes de microgranito tratados com o consolidante S 41, já se obteve uma razoável correlação polinomial entre a profundidade de penetração e o coeficiente de capilaridade A: A = $-0,2033 \times P_p^2 + 0,5857 \times P_p - 0,1879 \text{ com } r^2 = 0,8864$ (Figura 2.68).

Figura 2.68 Correlação polinomial obtida entre P_p e A nos provetes de microgranito de duas micas da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.

Se se considerarem os nove provetes sujeitos ao tratamento com o consolidante Tegovakon V, há uma boa correlação polinomial entre a profundidade de penetração e o coeficiente de capilaridade A: A=0,3304× P_p^2 -1,3545x P_p +1,5051 com r²=0,9174 (Figura 2.69).

Nos nove provetes dos dois tipos de granito tratados com o consolidante S 41, verifica-se também uma boa correlação polinomial: $A = 0,0266 x P_p^2 + 0,0289 x P_p + 0,1344$ com $r^2 = 0,9057$ (Figura 2.70).

Nos seis provetes de microgranito de duas micas sujeitos ao tratamento com o consolidante Tegovakon V, obteve-se uma aceitável correlação polinomial de segundo grau entre a profundidade de penetração e o coeficiente de capilaridade B: $B = 11,1240xP_p^2-43,1670xP_p+47,0920$ com $r^2=0,8842$ (Figura 2.71).

No que concerne aos seis provetes de microgranito tratados com o consolidantes S 41, obteve-se uma elevada correlação polinomial entre a profundidade de penetração e o coeficiente de capilaridade B: B = $-16,4250xP_p^2+50,4840xP_p-32,2080$ com r² = 0,9868 (Figura 2.72).

Figura 2.69 Correlação polinomial obtida entre P_p e A nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.

Figura 2.70 Correlação polinomial obtida entre P_p e A nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.

Se se considerar o conjunto dos nove provetes sujeitos ao tratamento com o consolidante Tegovakon V, verifica-se uma boa correlação polinomial entre a profundidade de penetração e o coeficiente de capilaridade B: $B=3,7107 \times P_p^2-15,8490 \times P_p+22,3620$ com $r^2=0,8814$ (Figura 2.73).

Nos nove provetes, dos dois tipos de granito, tratados com o consolidante S 41, não se verifica também uma boa correlação: $B = 0.7672 x P_p^2 - 3.7414 x P_p + 10.2700$ com $r^2 = 0.8048$.

Figura 2.71 Correlação polinomial obtida entre P_p e B nos provetes de granito de duas micas de grão médio da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.

Figura 2.72 Correlação polinomial obtida entre P_p e B nos provetes de microgranito de duas micas da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante S 41.

Figura 2.73 Correlação polinomial obtida entre P_p e B nos provetes de granito de duas micas de grão médio e de microgranito da Igreja Matriz de Caminha sujeitos a tratamento com o consolidante Tegovakon V.

2.5 Análise dos resultados

As pedras de granito de duas micas de grão médio e de microgranito de duas micas utilizadas na Igreja de Nossa Senhora da Assunção, Matriz de Caminha apresentavam meteorização herdada da pedreira, aquando da construção do monumento, conforme mostram os resultados obtidos da densidade aparente, da porosidade livre às quarenta e oito horas e da porosidade total ao mercúrio. O grau de meteorização varia de pedra para pedra nos dois tipos de rochas existentes, sendo que, nas pedras de microgranito dos dois portais da igreja de onde se retiraram os tarolos 6 a 9 o grau de meteorização é menor do que o das pedras de granito de grão médio de onde se extraíram os tarolos 1 a 5. Esta constatação é confirmada pelos resultados mineralógicos obtidos por difracção dos raios X e por microscopia electrónica de varrimento no estudo da deterioração da pedra deste monumento (Begonha, 2004a).

A aplicação dos dois produtos hidrófugos Sikagard 700 S e HB Siliker S 101 nos provetes de granito de grão médio conduziu a diminuições médias, aproximadas, do valor de N_{48} , de 13% e 11% respectivamente. Depois dos ensaios de envelhecimento, o valor de N_{48} aumentou em média 1,2% e 0,7% nos provetes tratados com cada um dos dois hidrófugos referidos anteriormente.

Capítulo 2

No ensaio de absorção de água por capilaridade, o coeficiente de capilaridade B é muito elevado, pelo que a ascensão por capilaridade das soluções salinas nos dois tipos de granito é muito rápida. Após a aplicação de qualquer um dos dois produtos hidrófugos, não se observou a ascensão da franja capilar em qualquer dos doze provetes. Como tal, verificou-se uma redução em média de 99% no coeficiente de capilaridade A e de 100% no coeficiente de capilaridade B. Após a realização dos ensaios de envelhecimento, também não se registou a ascensão da franja capilar. Os resultados do coeficiente de capilaridade A continuaram muito baixos relativamente aos obtidos antes do tratamento com os hidrófugos e quando comparados com os valores obtidos sem envelhecimento, registaram-se diminuições médias de 22% e de 31% do coeficiente de capilaridade A, respectivamente nos provetes tratados com Sikagard e Siliker.

Os ensaios de evaporação com temperatura e humidade relativa controladas, realizados nos trinta provetes recolhidos na Igreja Matriz de Caminha, mostraram que o fluxo de evaporação se reduziu em cerca de 81% depois da aplicação do hidrófugo Sikagard e em cerca de 83% depois da aplicação do hidrófugo Siliker. Após os ensaios de envelhecimento, os valores do fluxo de evaporação obtidos nos provetes tratados com Sikagard e quando comparados com os determinados antes do envelhecimento, diminuiram em média 44%. No caso dos provetes tratados com o produto hidrófugo Siliker, os valores do fluxo de evaporação diminuíram cerca de 31%.

Relativamente à saturação crítica, esta diminuiu, aproximadamente, 56% e 48% nos provetes tratados, respectivamente, com os produtos hidrófugos Sikagard e Siliker. Após os ensaios de envelhecimento e comparando com os valores registados antes do mesmo, observou-se um aumento de 25% e uma ligeira diminuição de 2% nos provetes tratados, respectivamente, com os produtos hidrófugos Sikagard e Siliker.

O tempo em que a saturação crítica é atingida aumentou 5,5 vezes e 6,4 vezes depois da aplicação, respectivamente, dos produtos de tratamento Sikagard e Siliker. Registaram-se aumentos, quase idênticos, na ordem dos 70% após a realização dos ensaios de envelhecimento nos provetes tratados com cada um dos produtos hidrófugos.

O Quadro 2.50 sintetiza os valores das variações médias percentuais da porosidade livre às quarenta e oito horas, do coeficiente de capilaridade A, do coeficiente de capilaridade B, do fluxo de evaporação, da saturação crítica e do instante em que a saturação crítica é atingida nos provetes dos dois tipos de granito da Igreja Matriz de Caminha, antes e após a aplicação dos produtos de tratamento Sikagard e Siliker e antes e após a realização dos ensaios de envelhecimento.

0

			enveinecimento).			
	Variações percentuais médias (%)						
	$\Delta N_{48T} \qquad \Delta N_{48E} \qquad \Delta A_T \qquad \Delta B_T \qquad \Delta A_E \qquad \Delta B_E$						
Sikagard	-13	1,2	-99	-100	-22	0	

-99

-100

-31

-11

Siliker

0,7

Quadro 2.50 Variações percentuais médias nos provetes da Igreja Matriz de Caminha	antes e após a
aplicação dos produtos hidrófugos Sikagard e Siliker e antes e após a realização dos	ensaios de
envelhecimento.	

	Variações percentuais médias (%)					
	$\label{eq:relation} \Delta q_{T} \qquad \Delta q_{E} \qquad \Delta S_{cT} \qquad \Delta S_{cE} \qquad \Delta t(S_{cT}) \qquad \Delta t(S_{cE})$					
Sikagard	-81	-44	-56	25	550	70
Siliker	-83	-31	-48	-2	640	70

Com base nos parâmetros apresentados no Quadro 2.50, é possível concluir que os dois produtos hidrófugos apresentam desempenhos em tudo muito semelhantes nos granitos da Igreja Matriz de Caminha estudados. Em termos de higroscopicidade, a sua acção pode ser considerada como excelente, traduzida pela quase anulação ou mesmo anulação dos valores dos coeficientes de capilaridade A e B. Pelo contrário, a aplicação dos dois hidrófugos dificulta e prolonga muito no tempo o fenómeno da evaporação, uma vez que o valor do fluxo q diminui drasticamente em mais de 80% e o tempo de saturação crítica t(S_c) aumenta mais de 5,5 vezes.

A aplicação dos produtos consolidantes Tegovakon V e HMK S 41 nos dezoito provetes de granito de grão médio e de microgranito levou a diminuições médias de N_{48} de 5,6% e 4,0% respectivamente. Depois dos ensaios de envelhecimento, o valor de N_{48} permaneceu em média praticamente inalterado: Nos provetes tratados com Tegovakon V, registou-se uma diminuição de 0,1% e nos provetes tratados com HMK S 41 um aumento de 0,9% relativamente aos valores que apresentava antes do tratamento.

Relativamente ao valor de N_{Hg} , o tratamento com Tegovakon V provocou uma diminuição média de 22% nos provetes de granito de grão médio, de 25% nos de microgranito e de 24% para o conjunto dos dois tipos de granito. A consolidação com HMK S 41 conduziu em média a diminuições de 28%, de 18% e de 23%, respectivamente nos provetes de granito de grão médio, nos de microgranito e no conjunto dos dois tipos de granito. Após os ensaios de envelhecimento, os valores de N_{Hg} , obtidos nos provetes tratados com Tegovakon V e quando comparados com os determinados antes do envelhecimento, aumentaram em média 2% nos de granito de grão médio, permaneceram sem alteração significativa (diminuição de 0,2%) nos de microgranito e aumentaram 1% no conjunto dos dois granitos, apesar da grande dispersão de resultados. Nos provetes em que se aplicou o consolidante HMK S 41, os valores de N_{Hg} aumentaram em média 16% nos de granito de grão médio,

Capítulo 2

24% nos de microgranito e 20% no conjunto dos dois tipos de granito, quando comparados com os valores obtidos antes dos ensaios de envelhecimento.

No que concerne ao valores da razão N_{μ}/N_{Hg} , nos provetes tratados com o consolidante Tegovakon V, verificou-se uma diminuição média de 7,5% nos de granito de grão médio, permanecendo praticamente sem alteração nos de microgranito (aumento de 0,3%) e uma diminuição de 1,2% para o conjunto dos dois granitos, mas com grande dispersão de resultados. Nos provetes consolidados com HMK S 41, a mesma razão diminuiu em média 1,5% nos provetes de granito de grão médio, 7,4% nos de microgranito e 5,5% nos dois granitos, também com elevada dispersão de resultados. Nos provetes sujeitos a envelhecimento e tratados com Tegovakon V, a razão N_{μ}/N_{Hg} , quando comparada com a obtida antes do envelhecimento, diminuiu em média 9,7% nos provetes de granito dos dois granitos, exibindo grande dispersão de resultados. Nos provetes em que se aplicou o consolidante HMK S 41, os valores da razão N_{μ}/N_{Hg} diminuíram em média 4,7% nos provetes de granito de grão médio, 9,3% nos de microgranito e 7,0% nos dois granitos, quando comparados com os registados antes dos envelhecimento.

O granito de grão médio apresenta duas ou três famílias de poros e o microgranito duas. Com a consolidação, todas as amostras de microgranito passaram a ter apenas uma família de poros e as de granito de grão médio duas famílias de poros, independentemente do tipo de consolidante utilizado. A aplicação dos consolidantes Tegovakon V e HMK S 41 teve assim como consequência o preenchimento da terceira família de poros de menor diâmetro de acesso. Após os ensaios de envelhecimento, verificou-se o reaparecimento da terceira família de poros de menor diâmetro de menor diâmetro de acesso no granito de grão médio tratado com qualquer um dos consolidantes. À excepção de uma das amostras, no microgranito, a rede porosa permanece essencialmente unimodal. A ordem de importância das duas principais famílias de poros não foi modificada com a aplicação de qualquer um dos dois consolidantes nem com a realização dos ensaios de envelhecimento.

Nos provetes tratados com Tegovakon V ou com HMK S 41, o coeficiente de capilaridade A reduziu-se em média respectivamente 59,1% e 25,7% e o coeficiente de capilaridade B 72,4% e 42,5%, relativamente aos valores que apresentavam antes da consolidação. Depois do envelhecimento, e comparando com os valores registados antes do mesmo, o coeficiente de capilaridade A aumentou em média 70,8% e diminuiu cerca de 1,2% e o coeficiente de capilaridade B aumentou 5,1 vezes e 1,1 vezes, respectivamente nos provetes em que se aplicou Tegovakon V e HMK S 41.

No ensaio de evaporação, e relativamente ao tratamento com Tegovakon V, o valor do fluxo de evaporação aumentou em média 40%. A consolidação com HMK S 41 conduziu em média a um aumento de 32%.

A saturação crítica apresenta um aumento de cerca de 70% e de 60% com a aplicação, respectivamente, dos consolidantes Tegovakon V e S 41.

Por outro lado, o valor do tempo em que a saturação crítica é atingida diminuiu cerca de 60% e 56%, relativamente aos valores que os provetes apresentavam antes do tratamento com os consolidantes Tegovakon V e S 41, respectivamente.

Após os ensaios de envelhecimento, os valores do fluxo de evaporação, da saturação crítica e do instante em que esta ocorre obtidos nos provetes tratados com Tegovakon V e quando comparados com os determinados antes do envelhecimento, diminuíram em média 41% e 8% e aumentaram 1,2 vezes, respectivamente. No que concerne aos provetes consolidados com o produto de tratamento S 41, o valor do fluxo de evaporação reduziu-se em cerca de 43%, a saturação crítica diminuiu 11% e o instante em que esta é atingida aumentou cerca de 1,5 vezes, relativamente aos valores que apresentavam antes da realização do ensaio de envelhecimento.

No granito de duas micas de grão médio, a profundidade de penetração média, determinada por medição directa, é de 2,3 cm e de 2,8 cm nos provetes tratados respectivamente com os produtos Tegovakon V e S 41.

No microgranito de duas micas, a profundidade de penetração média dos dois produtos consolidantes, estimada a partir do ensaio de absorção de água por capilaridade, é de 1,5 cm. Quando a mesma é obtida por medição directa, o seu valor médio é de 1,8 cm nos provetes tratados com Tegovakon V e de 1,6 cm nos provetes tratados com S 41.

Considerando o conjunto dos provetes de granito de grão médio e de microgranito, a profundidade de penetração média dos consolidantes Tegovakon V e S 41, determinada por medição directa, é respectivamente igual a 1,9 cm e a 2,0 cm.

O Quadro 2.51 apresenta os valores das variações percentuais médias de N_{48} , do coeficiente de capilaridade A, do coeficiente de capilaridade B, de N_{Hg} , da razão N_{μ}/N_{Hg} , do fluxo de evaporação, da saturação crítica e do instante em que a saturação crítica é atingida nos provetes em estudo, antes e após a aplicação dos produtos consolidantes Tegovakon V e S 41 e antes e após a realização dos

ensaios de envelhecimento, bem como os valores da profundidade de penetração média obtidos por medição directa.

Quadro 2.51 Variações percentuais médias nos provetes da Igreja Matriz de Caminha antes e após a aplicação dos produtos consolidantes Tegovakon V e S 41 e antes e após a realização dos ensaios de envelhecimento; profundidade de penetração média.

	Variações percentuais médias (%)					
	$\Delta N_{48T} \qquad \Delta N_{48E} \qquad \Delta N_{HgT} \qquad \Delta N_{HgE} \qquad \Delta (N_{\mu}/N_{Hg})_T \qquad \Delta (N_{\mu}/N_{Hg})_E$					
Tegovakon V	-5,6	-0,1	-24	1	-4	-1
S 41	-4	0,9	-23	20	-4	-7

	Variações percentuais médias (%)						
	$\Delta A_{T} \qquad \Delta B_{T} \qquad \Delta A_{E} \qquad \Delta B_{E} \qquad \Delta q_{T} \qquad \Delta q_{E}$						
Tegovakon V	-59,1	-72,4	70,8	510	40	-41	
S 41	-25,7	-42,5	-1,2	110	32	-43	

	ΔS_{cT}	ΔS_{cE}	$\Delta t(S_{cT})$	$\Delta t(S_{cE})$	P _{pm} (cm)
Tegovakon V	70	-8	-60	120	1,9
S 41	60	-11	-56	150	2,0

Atendendo aos parâmetros apresentados no Quadro 2.51, a profundidade de penetração dos dois consolidantes não é elevada. O consolidante Tegovakon V introduz uma maior resistência à entrada e à velocidade de transferência da água por capilaridade do que o consolidante S 41, traduzidas por maiores reduções nos valores dos coeficientes de capilaridade A e B, mas comporta-se pior no que diz respeito aos ensaios de envelhecimento durante o ensaio de absorção de água por capilaridade, apresentando maiores aumentos nos valores dos coeficientes A e B do que o consolidante S 41. A aplicação dos dois consolidantes facilita o processo de evaporação, aumentando o valor do fluxo q em mais de 30% e diminuindo o tempo de saturação crítica em mais de 55%. Contudo, a saturação crítica aumenta depois da consolidação, podendo conduzir a uma maior degradação da pedra, uma vez que uma maior quantidade de água passa a evaporar no interior da rede porosa do granito. Em termos de ensaio de evaporação, o envelhecimento conduz a uma deterioração idêntica dos dois consolidantes que se reflecte na diminuição do fluxo de evaporação q em mais de 40% e a um grande aumento de mais de 1,2 vezes do tempo em que é atingida a saturação crítica.

CONCLUSÕES

A aplicação de qualquer um dos produtos hidrófugos Sikagard 700 S ou HB Siliker S 101 no tratamento das pedras graníticas da Igreja Matriz de Caminha conduz a resultados idênticos no granito de grão médio, não introduz qualquer alteração cromática neste tipo de granito e a sua eficácia em termos de hidrofugacidade é excelente, mesmo depois de realizados os ensaios de envelhecimento acelerado.

Por outro lado, a aplicação dos dois hidrófugos dificulta o processo de evaporação, prolongando-o muito no tempo. Após a realização dos ensaios de envelhecimento acelerado, o processo torna-se ainda mais lento. Assim, se qualquer um dos dois produtos hidrófugos for aplicado em pedras situadas em zonas afectadas pela ascensão capilar de soluções salinas a partir do solo, a franja capilar deverá atingir cotas mais elevadas, conduzindo à deterioração de pedras que anteriormente não estavam submetidas a este fenómeno.

A profundidade de penetração atingida pelos produtos consolidantes Tegovakon V e HMK S 41 não é muito elevada nos dois tipos de granito. Não se observou qualquer alteração cromática no granito de duas micas de grão médio e no microgranito de duas micas após a aplicação de qualquer um dos dois consolidantes e/ou depois dos ensaios de envelhecimento. A consolidação com qualquer um dos dois produtos diminui em cerca de um quarto a porosidade total ao mercúrio, mas não altera significativamente a proporção dos microporos nas redes porosas dos dois granitos estudados.

O consolidante Tegovakon V comporta-se melhor que o consolidante HMK S 41 no que concerne à entrada e à velocidade de transferência da água por capilaridade, sendo, no entanto, muito mais sensível aos ensaios de envelhecimento. O produto HMK S 41 conduz, assim, a um resultado mais favorável a longo prazo, depois de realizados os ensaios de envelhecimento acelerado.

A aplicação dos dois consolidantes em estudo acelera o processo de evaporação, mas o facto de a saturação crítica aumentar após a consolidação pode contribuir para a deterioração da pedra, dado que uma maior quantidade de água poderá evaporar no interior da rede porosa.

REFERÊNCIAS

ACCARDO, G., TABASSO, M.L., MASSA, S., ROSSI-DORIA, P., 1978 - Measurements of porosity and of mechanical resistance in order to evaluate the state of deterioration of some stones. Proceedings Colloque International UNESCO - RILEM Altération et Protection des Monuments en Pierre-Paris 1978, 22 pp.

ALVES, C., 1997 - Estudo da deterioração de materiais graníticos aplicados em monumentos da cidade de Braga (Norte de Portugal). Implicações na conservação do Património Construído. Tese de Doutoramento, Universidade do Minho, Braga, 291 pp.

ALVES, C.; JEANNETTE, D., SEQUEIRA BRAGA, M.A., 1993 - Origin of porosity in the Braga granite and implications in Braga (NW Portugal) monuments degradation. Terra abstracts, N^o. 1, vol. 5, EUG VII, Strasbourg, pp. 621.

ALVES, C., SEQUEIRA BRAGA, M.A., 1994 - Acção deteriorante da cristalização de sais em monumentos graníticos (um exemplo em Braga, Portugal). Proceedings Scientific Meeting - Granitic Materials and Historical Monuments-Braga 1994, Braga.

ALVES, C., SEQUEIRA BRAGA, M.A., 1995 - Transferências de soluções e deterioração de materiais graníticos aplicados em monumentos de Braga (Portugal). Proceedings 1º Congresso Internacional da Pedra Natural-Lisboa 1995, pp. 281-292.

ALVES, C.; SEQUEIRA BRAGA, M.A., HAMMECKER, C., 1996 - Water transfer and decay of granitic stones in monuments. C.R. Académie Sciences de Paris, T. 323, Série IIa, Paris, pp. 397-402.

AMOROSO, G.G., FASSINA, V., 1983 - Stone decay and Conservation. Elsevier, Materials Science Monographs, 11, 453 pp.

ARNOLD, A., 1984 - Determination of mineral salts from monuments. Studies in Conservation, vol. 29, pp. 129-138.

ARNOLD, A., ZEHNDER, K., 1987 - Monitoring wall paintings affected by soluble salts. Proceedings Symposium The Conservation of Wall Paintings-London 1987, (ed. Sharon Cather), Courtauld Institute of Art and the Getty Conservation Institute, London, pp. 103-135.

ARNOLD, A., ZEHNDER, K., 1988 - Decay of stony materials by salts on humid atmosphere. Proceedings 6th International Congress on Deterioration and Conservation of Stone-Torun 1988, pp. 138-148.

ARNOLD, A., ZEHNDER, K., 1989 - Salt weathering on monuments. Proceedings 1st Symposium La Conservazione dei Monumenti nel Bacino del Mediterraneo-Bari 1989, (ed. Fulvio Zezza), Grafo, Brescia, pp. 31-58.

ATZENI, C.; MASSIDDA, L., SANNA, U., 1991 - Considerazioni sulla applicazione della legge di Darcy nello studio dell' assorbimento capillare in rocce porose. Proceedings Le Pietre nell' Architettura: Struttura e Superfici - Bressanone 1991 (coordenação de Guido Biscontin e Daniela Mietto), pp. 203-213.

BEGONHA, A., 2000 - Estudo da Patologia da Pedra do Mosteiro de S. Miguel de Refojos em Cabeceiras de Basto. Porto, 73 pp.

BEGONHA, A., 2001 - Meteorização do Granito e Deterioração da Pedra em Edifícios e Monumentos da Cidade do Porto. Tese de Doutoramento apresentada à Universidade do Minho, FEUP-Edições, Porto, 445 pp.

BEGONHA, A., 2002a - Estudo da Patologia da Pedra da Igreja de S. Pedro de Rates. Relatório no âmbito do Protocolo DGEMN-FEUP – Estudo dos Materiais Pétreos e Argamassas, FEUP, Porto, 85 pp.

BEGONHA, A., 2002b - Igreja de S. Pedro de Rates: Estudo da deterioração da pedra. A Intervenção no Património: Práticas de Conservação e Reabilitação, Faculdade de Engenharia da Universidade do Porto e Direcção Geral dos Edifícios e Monumentos Nacionais, (eds. A. Costa, J. Miranda Guedes, P. Silva, E. Paupério), Porto, pp. 309-332.

BEGONHA, A., 2002c - Igreja de S. João de Tarouca: Estudo da Deterioração da Pedra. Relatório, Porto, 68 pp.

BEGONHA, A., 2003a - Estudo da Aplicação de Consolidantes em Pedras da Igreja de S. Pedro de Rates. Relatório no âmbito do Protocolo DGEMN-FEUP – Estudo dos Materiais Pétreos e Argamassas, FEUP, Porto, 66 pp.

BEGONHA, A., 2003b - Igreja de Nossa Senhora da Ajuda, Matriz de Espinho: Estudo da Deterioração e do Tratamento da Pedra. Porto, 52 pp.

BEGONHA, A., 2004a - Igreja de Nossa Senhora da Assunção, Matriz de Caminha: Estudo da Deterioração da Pedra - Diagnóstico e Tratamentos. Porto, 80 pp.

BEGONHA, A., 2004b - Convento de São Gonçalo de Amarante: Estudo Diagnóstico e Proposta de Tratamento da Pedra. Relatório no âmbito do Protocolo DGEMN-FEUP – Estudo dos Materiais Pétreos e Argamassas, FEUP, Porto, 135 pp.

BEGONHA, A., FOJO, A., 2006 - Igreja de Nossa Senhora da Assunção, Matriz de Caminha: Estudo da Aplicação de Consolidantes nas Pedras de Microgranito dos Portais Oeste e Sul e de Hidrófugos na Fachada Norte. Porto, 90 pp.

BEGONHA, A.; JEANNETTE, D.; HAMMECKER, C., SEQUEIRA BRAGA, M.A., 1994 - Physical characteristics of the Oporto granite related to stone decay in monuments. Proceedings 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo-Venezia 1994, (eds. V. Fassina, H. Ott e F. Zezza), Venezia, pp. 541-546.

BEGONHA, A., SEQUEIRA BRAGA, M.A., 1994 - Stone decay in the Hospital de Santo António: the role of granite weathering and the impact of air pollution. Proceedings Scientific Meeting - Granitic Materials and Historical Monuments-Braga 1994, Braga.

BEGONHA, A., SEQUEIRA BRAGA, M.A., 1996a - Characterization of black crusts and thin black layers in granitic monuments: the role of air pollution. Proceedings of the European Commission Workshop Degradation and Conservation of Granitic Rocks in Monuments-Santiago de Compostela 1994, (eds. M.A. Vicente, J. Delgado Rodrigues e J. Acevedo), Protection and Conservation of European Cultural Heritage, Research Report N°. 5, pp.121-126.

BEGONHA, A., SEQUEIRA BRAGA, M.A., 1996b - Black crusts and thin black layers in granitic monuments: their characterization and the role of air pollution. Proceedings 8th International Congress on Deterioration and Conservation of Stone-Berlin 1996, (ed. Josef Riederer), vol. 1, Berlin, pp. 371-375.

CASAL PORTO, M., 1989 - Estudio de la alteración del granito en los edificios de interés histórico de la provincia de La Coruña. Tese de doutoramento, Universidad de Santiago de Compostela, Santiago de Compostela, 273 pp.

CASTRO, E., 1974 - Determination of the pore-size distribution in stones by means of the moisture suction. LNEC, Memória, N°. 441, Lisboa, 11 pp.

CASTRO, E., 1977 - Détermination de la porométrie et de la surface spécifique des pierres par des essais de succion. LNEC, Memória, N°. 490, Lisboa, 16 pp.

CASTRO, E., 1979a - Les méthodes de succion dans l' étude de l' altération des pierres. LNEC, Memória, N°. 516, Lisboa, 29 pp.

CASTRO, E., 1979b - Évaluation de l' hygroscopicité des pierres. LNEC, Memória, N°. 526, Lisboa, 22 pp.

CASTRO, E., 1981 - Quelques études sur l' efficacité et la durabilité de deux traitements appliqués à un calcaire. LNEC, Memória, N°. 563, Lisboa, 13 pp.

CASTRO, E., 1983 - Studies on stone treatments. LNEC, Memória, Nº. 584, Lisboa, 6 pp.

CASTRO, E., 1988 - The interest of pore-size distribution in the identification of marbles suction methods. LNEC, Memória, N°. 721, Lisboa, 12 pp.

CASTRO, E., DELGADO RODRIGUES, J., CRAVO, M.R.T., 1988 - Étude du nettoyage d' un monument en granite. LNEC, Memória, N°. 715, Lisboa, 10 pp.

CASTRO, E., DELGADO RODRIGUES, J., CRAVO, M.R.T., 1990a - Estudos relativos à alteração e conservação da fachada da Igreja de Santa Cruz, em Coimbra. Relatório 176/90 - NP/NQ, Lisboa, 99 pp.

CASTRO, E., DELGADO RODRIGUES, J., CRAVO, M.R.T., 1990b - Estudos relativos à alteração e à conservação do granito do claustro do Mosteiro de Grijó, em Vila Nova de Gaia. Relatório 243/90 - GERO/NQ, Lisboa, 41 pp.

CASTRO, E., DELGADO RODRIGUES, J., CRAVO, M.R.T., 1991a - Estudo relativo à acção dos pombos sobre a pedra das igrejas do Carmo e dos Carmelitas, no Porto, e de São Gonçalo, em Amarante. Relatório 44/91 GERO/NQ, Lisboa, 27 pp.

CASTRO, E., DELGADO RODRIGUES, J., CRAVO, M.R.T., 1991b - Estudo relativo à alteração e à conservação do granito da Torre dos Clérigos, no Porto. Relatório 70/91 - GERO/NQ, Lisboa, 18 pp.

DELGADO RODRIGUES, J., 1993a - Conservation of granitic rocks with application to megalithic monuments – granitix. European Cultural Heritage Newsletter on Research, vol. 7, N^o. 1-4, pp. 27-33.

DELGADO RODRIGUES, J., 1993b - Incógnitas e problemas relativos à conservação de rochas graníticas e a sua abordagem nos projectos STEP. Alteración de Granitos y rocas afines - Proceedings Workshop Alteración de Granitos y rocas afines, empleados como materiales de construcción-Ávila 1991, (eds. Vicente Hernández, Molina Ballesteros e Rives Arnau), C.S.I.C., Madrid, pp. 67-73.

DELGADO RODRIGUES, J.; COSTA, D., PINTO, A.P.F., 1996 - Use of water absorption characteristics for the study of stone treatments. Proceedings of the European Commission Workshop Degradation and Conservation of Granitic Rocks in Monuments-Santiago de Compostela 1994, (eds. M.A. Vicente, J. Delgado Rodrigues e J. Acevedo), Protection and Conservation of European Cultural Heritage, Research Report N°. 5, pp. 319-324.

DIRECÇÃO GERAL DOS EDIFÍCIOS E MONUMENTOS NACIONAIS, 1936 - Igreja Matriz de Caminha, Monumentos. Boletim da Direcção Geral dos Edifícios e Monumentos Nacionais, 6, 28 pp.

DIRECÇÃO GERAL DOS EDIFÍCIOS E MONUMENTOS NACIONAIS, 2001 - Inventário do Património Arquitectónico – Ficha número 1602070002 – Igreja Matriz de Caminha / Igreja de Nossa Senhora da Assunção. Paula Noé, 2001, 4 pp.

FERREIRA, J.F.O., 2004 - Caracterização da Acção da Água em Edifícios de Pedra. Tese de Mestrado, Universidade do Minho, Guimarães, 177 pp.

FITZNER, B.; HEINRICHS, K., VOLKER, M., 1996a - Model for salt weathering at maltese globigerina limestones. Proceedings of the European Commission Research Workshop Origin, Mechanisms and Effects of Salts on Degradation of Monuments in Marine and Continental Environments-Bari 1996, (ed. F. Zezza), Protection and Conservation of European Cultural Heritage, Research Report N°. 4, pp. 333-344.

FORT, R.; LOPEZ DE ASCONA, M.C., MINGARRO, F., 1995 - Petrophysical properties of the stone material of the bell tower of the Cathedral of Toledo (Spain). Proceedings 1° Congresso Internacional da Pedra Natural-Lisboa 1995, pp. 315-323.

FREITAS, V.P., 1992 - Transferência de humidade em paredes de edifícios - análise do fenómeno de interface. Tese de Doutoramento. Universidade do Porto, Porto, 200 pp.

FREITAS, V.P.; ABRANTES, V., CRAUSSE, P., 1996 - Moisture migration in building walls - analysis of the interface phenomena. Building and Environment, vol, 31, N°. 2. pp. 99-108.

HAMMECKER, C., 1993 - Importance des transferts d'eau dans la dégradation des pierres en oeuvre. Tese de Doutoramento, Université Louis Pasteur de Strasbourg, Strasbourg, 254 pp.

HAMMECKER, C.; ESBERT, R.M.A., JEANNETTE, D., 1992 - Geometry modifications of porous network in carbonate rocks by ethyl silicate treatment. Proceedings 7th International Congress on Deterioration and Conservation of Stone-Lisboa 1992, (eds. J. Delgado Rodrigues, F. Henriques e F. Telmo Jeremias), LNEC, vol. 3, Lisboa, pp. 1053-1062.

HAMMECKER, C.; MERTZ, J.D.; FISCHER, C., JEANNETTE, D., 1993 - A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transport in Porous Media, 12, pp. 125-141.

JEANNETTE, D., HAMMECKER, C., 1992 - Facteurs et mécanismes des alterations. La Conservation de la Pierre Monumentale en France, Presses du CNRS, Paris, pp. 73-81.

JEANNETTE, D., HAMMECKER, C., 1993 - Importance des structures de porosité dans les altérations des pierres des monuments. Colloque Sédimentologie et Géochimie de la Surface à la mémoire de Georges Millot, Paris, pp. 307-319.

KOBRANOVA, V.N., 1989 – Petrophysics. Mir Publishers, Springer Verlag, 375 pp.

LEROUX, L., VERGÈS-BELMIN, V., COSTA, D., DELGADO RODRIGUES, J., TIANO, P., SNETHLAGE, R., SINGER, B., MASSEY, S., DE WITTE, E., 2000 - Measuring the penetration depth of consolidating products: comparison of six methods. Proceedings 9th International Congress on Deterioration and Conservation of Stone, (ed. Vasco Fassina), vol. 2, Venezia, pp. 361–369.

MENG, B., 1992 - Moisture - Transport - Relevant characterization of pore structure. Proceedings 7th International Congress on Deterioration and Conservation of Stone-Lisboa 1992, (eds. J. Delgado Rodrigues, Fernando Henriques e F. Telmo Jeremias), LNEC, vol. 1, Lisboa, pp. 387-396.

MENG, B., 1993 - Characterization of pore structure for the interpretation of moisture transport. Proceedings International RILEM/UNESCO Congress Conservation of Stone and other Materials-Paris 1993, (ed. M. J. Thiel), E & FN Spon, vol. 1, London, pp. 155-162.

MERTZ, J.D., 1991 - Structures de porosité et propriétés de transport dans les grés. Tese de Doutoramento, Université Louis Pasteur de Strasbourg, Sciences Géologiques, 90, Strasbourg, 149 pp.

MOUTINHO, A., 2005 – Estudo da Deterioração da Pedra da Igreja de Santa Maria de Leça do Mosteiro de Leça do Balio – Contribuição para o ensino das Geociências. Tese de Mestrado, Universidade do Porto, Porto, 299 pp.

NORD, A.G., ERICSSON, T., 1993 - Chemical analysis of the black layers on building stone. Studies in Conservation, vol. 38, N°. 1, pp. 25-35.

NORD, A.G., TRONNER, K., 1991 - Stone weathering - air pollution effects evidenced by chemical analysis. Konserverings Tekniska Studier RIK 4, Riksantikvarieambetet och Statens Historiska Museer, Stockholm, 80 pp.

NORD, A.G., TRONNER, K., 1992 - Characterization of thin black layers. Proceedings 7th International Congress on Deterioration and Conservation of Stone-Lisboa 1992, (eds. J. Delgado Rodrigues, Fernando Henriques e F. Telmo Jeremias), LNEC, vol. 3, Lisboa, pp. 217-225.

ORDÓÑEZ, S.; FORT, R., GARCÍA DEL CURA, M.A., 1995 - Pore size distribution in durability evaluation of porous limestones: Bateig stone (Alicante - Spain). Proceedings 1° Congresso Internacional da Pedra Natural-Lisboa 1995, pp. 325-333.

PÉREZ-ORTIZ, A.; ORDAZ, J.; ESBERT, R.M., ALONSO, J., 1994 - Microfissuring evolution of the granite from the Aleixos dolmen along the salt crystallization test. Proceedings 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo-Venezia 1994, (eds. V. Fassina, H. Ott e F. Zezza), Venezia, pp. 115-119.

PINTO, A.P.F., 1993 - Conservação de pedras graníticas - estudo da acção de hidrófugos. Tese de Mestrado, Instituto Superior Técnico, Lisboa, 345 pp.

PINTO, A.P.F.; DELGADO RODRIGUES, J., COSTA, D.R., 1994 - Assessment of the efficacy and harmfulness of water repellents in granite. Proceedings 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo-Venezia 1994, (eds. V. Fassina, H. Ott e F. Zezza), Venezia, pp. 883-889.

PINTO, A.P.F.; DELGADO RODRIGUES, 2003 - Hidrofugação da pedra, recomendações para a optimização da relação eficácia/custo. 3° Encore - Materiais e técnicas de conservação e de reabilitação, LNEC, Lisboa, pp. 475-482.

RODRIGUEZ-REY, A.; BRIGGS, G.A.D.; FIELD, T.A., MONTOTO, M., 1990 - Acoustic microscopy of rocks. Journal of Microscopy, vol. 160, 1, pp. 21-29.

ROSA, R.N., 1996 - Contributions to the physical characterization of granitic rocks. Proceedings of the European Commission Workshop Degradation and Conservation of Granitic Rocks in Monuments-Santiago de Compostela 1994, (eds. M.A. Vicente, J. Delgado Rodrigues e J. Acevedo), Protection and Conservation of European Cultural Heritage, Research Report N°. 5, pp. 255-260.

ROSSI-MANARESI, R., TUCCI, A., 1991 - Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Studies in Conservation, vol. 36, N^o. 1, pp. 53-58.

SEQUEIRA BRAGA, M.A.; ALVES, C.; BEGONHA, A., GOMES DA SILVA, F., 1996 - Industrial and urban pollution impact in Portuguese monuments: comparative study between two regions. Proceedings of the European Commission Workshop Degradation and Conservation of Granitic Rocks in Monuments-Santiago de Compostela 1994, (eds. M.A. Vicente, J. Delgado Rodrigues e J. Acevedo), Protection and Conservation of European Cultural Heritage, Research Report N°. 5, pp. 127-132.

SERVIÇOS GEOLÓGICOS DE PORTUGAL, 1992 – Folha 1 - Carta Geológica de Portugal à escala 1:200000. Notícia Explicativa, Coordenação de E. Pereira, 83 pp.

SOUSA, J. M. M. S., 1996 - Caracterização da capilaridade de revestimentos de fachada. Tese de Mestrado, Universidade do Porto, Porto, 138 pp.

VICENTE, M.A., 1996 - Final report 1991-1994 - Project STEP-CT90-0101 - Granitic materials and historical monuments: study of the factors and mechanisms of weathering and application to historical heritage conservation. Proceedings of the European Commission Workshop Degradation and Conservation of Granitic Rocks in Monuments-Santiago de Compostela 1994, (eds. M.A. Vicente, J. Delgado Rodrigues e J. Acevedo), Protection and Conservation of European Cultural Heritage, Research Report N°. 5, pp. 1-44.

VICENTE, M.A.; GARCIA-TALEGON, J.; IÑIGO, A.C.; MOLINA, E., RIVES, V., 1993 - Weathering mechanisms of silicated rocks in continental environments. Proceedings International RILEM/UNESCO

Congress Conservation of Stone and other Materials-Paris 1993, (ed. M. J. Thiel), E & FN Spon, vol. 1, London, pp. 320-327.

WASHBURN, E.W., 1921 - The Dynamics of Capillary Flow. The Physical Review, Vol., XVII, n° 3, pp. 273-283.

ANEXO 1

Sikagard[®] 700 S

Impermeabilização invisível de fachadas

Descrição do produto	Sikagard 700 S é um produto de impregnação formulado com base em silicone (siloxane) e solventes, fornecido em um só componente.
Utilizações	Como impregnação repelente de água em variados materiais de construção de base mineral utilizados em fachadas (betão, rebocos, pedras naturais, tijolo, tijoleira não vidrada, fibrocimento, caiações, etc.); actua como protecção antigelo e evita a infiltração de água em superfícies porosas. É recomendado como primário sob pinturas de Sikagard 680 ES Betoncolor, no tratamento de betão ou rebocos de cimento, quando existirem fortes solicitações. Sikagard 700 S, por conter solventes activos, não deve ser aplicado sobre as tradicionais pinturas para fachadas.
Vantagens	Sikagard 700 S penetra no suporte em profundidade e resiste ao contacto com álcalis. Quando aplicado sobre elementos constituídos por cimento, depois de totalmente endurecidos, constitui um tratamento muito resistente quimicamente. A repelência da água da chuva batida é excelente, mas não forma barreira de vapor e possibilita a evaporação da água contida nos materiais constituintes da construção (por exemplo: betão, rebocos). A resistência à geada e à água de condensação é substancialmente melhorada e diminuirá a aderência e depósito de impurezas. Como primário para Sikagard 680 ES Betoncolor, Sikagard 700 S fornece uma protecção adicional como repelente de água em poros eventualmente existentes, zonas deficientemente pintadas e fissuras (mesmo que surjam posteriormente, até 0,2 mm de largura). Este processo é particularmente recomendado contra a penetração e o congelamento da água de condensação e orvalho, mas só deve ser utilizado em bases que possuam uma determinada capacidade de absorção.
Dados do produto	
Tonalidade	Líquido incolor.
Fornecimento	5 e 25 litros.
Armazenagem	O produto deve estar armazenado em local fresco e seco, na embalagem de origem.
Conservação	Conserva-se 18 meses a partir da data de fabrico.
Dados técnicos	
••••••••••••••••••••••••••••••••••••••	

Massa volúmica (23° <u>+</u> 2°C)

Aprox. 0,8 kg/l.

	Modo de emprego	
Anexo 1	Preparação da superfície	Deve encontrar-se isenta de poeiras e outras impurezas; eventuais eflorescências calcárias e restos de tintas antigas devem ser removidos. Fissuras existentes devem ser cuidadosamente colmatadas. O melhor efeito é obtido quando a aplicação é efectuada sobre superfícies secas e com suficiente absorção. No entanto, Sikagard 700 S pode ser aplicado com êxito em zonas ligeiramente humedecidas (teor de humidade máximo: 10%). Se elementos de betão ou rebocos, já tratados com Sikagard 700 S, apresentarem juntas carecidas de selagem com mastiques não ocorre qualquer problema de aderência, nem existe impedimento na utilização dos primários para os respectivos mastiques. Embora juntas tratadas com Sikagard 700 S possam ser colmatadas com vários mastiques do nosso programa de fabrico, a experiência recomenda, como mais eficaz, Sikaflex HP1. Elementos de caixilharia que vão receber uma posterior pintura devem ser isolados, quando se efectuar a aplicação de Sikagard 700 S não ataca o PVC, mas exerce uma acentuada agressão em poliestireno expandido e borracha sintética, provocando o seu amolecimento, entumescimento e mesmo ruptura. Recomenda-se por tais motivos, que a colocação ou montagem destes elementos se efectue somente após aplicação de Sikagard 700 S. Se tal não for possível, impõe-se o seu isolamento cuidado, quando decorrerem as operações de pintura.
	Aplicação ——————————	Sikagard 700 S é fornecido pronto a aplicar.
	Método de aplicação ——————— Esquemas de pintura	Empregar pincéis ou pulverizadores normais, aplicando-se farta e uniformemente. 1-2 x Sikagard 700 S; quando da utilização de 2 demãos, a aplicação efectua-se
	Rendimento	fresco sobre fresco.
	Tempos de espera	Quando utilizadas 2 demãos, Sikagard 700 S aplica-se fresco sobre fresco. Como primário para Sikagard 680 ES Betoncolor deve reservar-se um tempo de secagem não inferior a 5 horas. Neste esquema a 1ª demão de Sikagard 680 ES Betoncolor (incolor ou colorido) deve diluir-se com aproximadamente 10% de Diluente C.
	Limpeza de ferramentas	Com Diluente B.
	Risco e segurança	
	Medidas de segurança	No estado líquido, Sikagard 700 S e Diluente B podem contaminar a água, pelo que não devem ser vazados nas canalizações ou terrenos. Se a aplicação de Sikagard 700 S se efectuar em locais não arejados é aconselhada uma ventilação cuidada. Em caso de contacto com os olhos, lavar imediatamente com água e consultar o médico. Para mais informações, consultar a ficha de segurança do produto.
<u></u>	Si R. 44 Pc	"O produto está seguro na C ^e Seguros Metrópole, SA (Apólice nº 4036758), a título de responsabilidade civil do fabricante". A informação e em particular as recomendações relacionadas com aplicação e utilização final dos produtos Sika, são fornecidas em boa fé e baseadas no conhecimento e experiência dos produtos sempre que devidamente armazenados, manuseados e aplicados em condições normais. Na prática, as diferenças no esta- do dos materiais, das superfícies, e das condições de aplicação em obra, são de tal forma imprevisíveis que nenhuma garantia a respeito da comercialização ou aptidão para um fim em particular, nem qualquer responsabilidade decorrente de qualquer relacionamento legal, poderão ser inferidas desta informação, ou de qualquer recomendação por escrito, ou de qualquer outra recomendação dada. Os direitos de propriedade de terceiros deverão ser observados. Todas as encomendas aceites estão sujeitas às nossas condições de venda e de entrega vigentes. Os utilizadores deverão sempre consultar as versões mais recentes das fichas técnicas dos respectivos produtos, que serão entregues sempre que pedidas. Ma Portugal, SA de Santarém, 113 Tel. +351 22 377 69 00 100-292 V. N. Gaia Fax +351 22 370 20 12 www.sika.pt
Æ	R. 44 Pc	de Santarém, 113 100-292 V. N. Gaia brtugal Mwww.sika.pt 162 Xettuccio responsivel ISO 9001 4 ISO 9001 4 ISO 9001 4 ISO 9001 4 ISO 9001 4 ISO 9001 4 Sikagard® 700 S 2/

1		
	H B QUINICA - FEPRESENTAÇÕES COMERCIO E SERVIÇOS. LDA	
BQUIMICA	Sede: Pua Dr. Joaquim Nogueira dos Santos, 870 - 3º Dtª	Anexo 1
	4470 - 474 NOGUEIRA DA MA!A	
mazém / És	oritório: Trav. De Gatões, Armazém A	FICHA TECNICA
	4460-886 CUSTÓAS MTS	
arrus@netcabo.	pt - Capital Social 5 000,00 € - Mat. C.R.C Maia sob o n ^a 57910	
f: 93,95977	61/22.954278/ Fax: 22.9631156 / 22.9601800	hadrissa and the statistic sector of the state of the sta
men de la grant finde sitz de la	N.C. 505 435 730	HB SILIKER S 101

O SILIKER S 101 é um agente hidrofugante baseado em organosiloxanos oligoméricos(cadeias moléculares muito curtas) que, reagindo com a humidade atmosférica e a água molécular dos suportes em que é aplicado, condensa-se, transformando-se num polisiloxano seco que reveste o interior dos capilares.

Esta impregnação, que não oblitera os capilares, permite o "respirar" natural dos suportes, mas impede a sua molhagam pela água e consequentemente a sua absorção devida a fenómenos de capilaridade

O facto do SILIKER S 101 se basear em compostos ofigoméricos, proporciona-lhe uma excelente penetração, mesmo em suportes dificeis.

Dado que a reacição de formação das substancias hidro-repelentes necessita de água o SILIKER S 101 pode ser aplicado em suportes ligeimmente húmidos, ao contrário dos baseados em Silanos. (N.B = NÃO ENCHARCADOS O QUE IMPEDIRIA A PENETIRAÇÃO NOS POROS OCUPADOS POR H2O.)

Em função do exposto, podemos sintetizar em seis as propriedades do SILIKER S 101:

- a) Excelente capacidade de penetração devido à sua estrutura oligomérica, e ao tipo de solventes especialmente usados na sua formulação.
- b) Total resistencia à alcalinidade, o que permite a sua aplicação em betão recentemente descofrado.
- c) Possibilidade de aplicação sobre suportes húmidos.
- d) As superfícies tratadas com o SILIKER S 101 apresentam-se secas ao tacto e sem qualquer alteração de aspecto visual.
- e) Não há formação de filme na superfície das superfícies tratadas, permitindo a sua pintura com tintas aquosas, se tal se pretender.
- f) Excelente racio RENDIMENTO / DURABILIDADE / FACILIDADE DE APLICAÇÃO.

CAMPOS DE APLICAÇÃO:

> .>

1/4

O SILIKER 8 101 é indispensável numa boa e segura hidrofugação dos materiais inorgânicos de Construção Civil, todas as espécies de betão, incluindo o expandido, fibrocimento, pedras naturais, e todo o tipo de pinturas baseadas em tintas de água.

O SILIKER 5 101 não deve ser usado na hidrofugação de gessos. Se se pretender esta aplicação é favor contactar os nossos Serviços Técnicos para informação específica.

16/02 05 QUA 17:21 FAX 351 2 9531156

卤003

A A A A A A A A A A A A A A A A A A A	H B QUIMICA - REPRESENTAÇÕES COMERCIO E SERVIÇOS, LDA	Añexo 1-
BQUIMICA	Sede: Fua Dr. Ioaquim Nogueira dos Santos. 870 - 3º DIº	
A CON	4470 - 474 NOGUEIRA DA MAIA	
·mazérn / Es	critório: Trav. De Gatões, Armazém A	FICHA TECNICA
	4460-886 CUSTÓAS MTS	
arms@netcabo.	pt - Cepital Sociel 5-300,00 € - Mai, C R.C Maia soble r° 57910	
f: 93.96977	81 / 22.95 42787 Fax: 22.9531156 / 22.9601300	
	N.C. 505 435 730	HB SILIKER S 101

RENDIMENTO:

O SILIKER S 101, em condições normais de aplicação, deverá render, dependendo do suporte e do processo de aplicação, entre 0,1 e 2 L / m2.

A nossa experiencia de aplicação, confirmada pela dos nossos clientes, permite-nos dar os seguintes valores A TITULO MERAMENTE INDICATIVO:

SIRROCIMENTO	0,10 a 0,20 L/m2
BETÃO MASSA DE REBOCO BETÃO EXPANDIDO (YTONG)	0,25 a 1,50 L/m2 0,50 a 1,50 L/m2 0,50 a 2 L/m2 0,50 a 2 L/m2
PEURA NATURAL	-1

Rocomendamos vivamente aos nossos clientes ensaios prévios que verifiquem com maior rigor estas nossas indicações.

CARACTERISTICAS DE SEGURANÇA:

rec de inflomação		32 °C
		240°C
GVFIGGVS	3.3 Grupo	de emb. I I I
ATA - DGR	3/111/PAC 30	9 / CAC 310

TIPOS DE EMBALAGEM:

25 L 200 L

CUIDADOS DE ARMAZENAMENTO:

O SILIKER S 101, na sua embalagem de origem tem uma estabilade até 3 meses, se se observarem as normas abaixo indicadas.

Armazenar em local arejado, evitando exposição das embalagens aos raios solares, bem como a temperaturas superiores a 30º C.

Quardo armazenados no exterior, mesmo por curtos períodos, providenciar protecção adequada.

As embalagens em uso, por causa da forte reactividade do sistema perante a húmidade atmosférica ambiente devem estar sempre bem fechadas.

Não recuperar o SILIKER S 101 usado defante a aplicação para as embalagens originais.

3/4

1 - - -

1 6...00-0005

10.00

DRA

Anexo 1 H B QUINICA - R EPRESENTAÇÕES COMERCIO E SERVIÇOS, LDA	
Sede: Fua Dr. Joaquim Nogueira dos Santos 870 - 3º Dtº	
4470 - 4"4 NOIGUEIRA DA MAIA	TICHA TÉCNICA
Armazém / Escritório: Trav. De Gatões, Armazém A	FILMA I LUNIVA
4463-886 CUSTÓAS MTS	
hjbarros@netcabo.pt - Capital Goslal € 000,00 € - Mat. C.R.C Mala sch o nº 57910	
TIF: 93.9697781/22.9542787 Fax: 22.9537166 7 22.9597640	HB SILIKER S 101
N.S. 505 400 150	<u>[]</u>

SILIKER S 101

Hidrofugante para superficies de betão, pedra, fibrocimento e outros materiais inorgânicos. Ver literatura do produto.

Aplicação:

Usa-se tal e qual.

Deve a parede ou a superficie a tratar estar pouco humida ou mesmo seca. Aplicar regularmente e por toda a superficie com pulverizador de baixa pressão, brocha, trincha ou mesmo rolo, mas de forma que toda a area fique bem encharcada. Se houver recessidade pode ser aplicada uma segunda demão. Nunca usar atomizador ou qualquer processo de projecção a alta pressão e gota fina, porque se perderá produto por causa da evaporação, que se dará antes de o liquido entrar bem na superficie a tratar.

Depois de aplicado o produto, a superficie tratada não deve ser molhada ou apantar chuva durante cerca de 36 horas, para que se consigam os melhores resultados.

Cuidados a ter:

- 1 Não deitar sobras dentro da embalagem original.
- 2 Os escorridos do produto, se forem apanhados, podem ser aproveitados quanto aplicados imediatamente.
- 3 Manter a embalagem sempre tem fechada.
- 4 Não aplicar o produto sobre uma superficie molhada.
- 5 Usar baldes secos.
- 6 Lavar o equipamento de aplicação com diluente. Nunca água.

Nota: Estes conselhos também se aplicam ao SILIKER S 107 e SILIKER S 105.

www.biu.pt biu@mail.telepac.pt

ONSULTORIA E COMÉRCIO. Rua Gil Vicente nº 4 Arcena P-2615-223 Alverca PORTUGAL TEL + 351 21 957 88 88 - FAX + 351 21 957 88 90

Contribuinte N º 502 600 934

Capital Social: 400.000500 Cons. Reg. Com. de Vila Franca de Xira nº 2446

Anexo	1

ETILORTOSILICATO PARA CONSOLIDAÇÃO DE MATERIAIS MINERAIS DESAGREGADOS

Os agentes consolidantes TEGOVAKON[®] são sistemas monocomponentes, prontos para aplicação, à base de ester de silicio e metilsiloxano com efeito consolidante (TEGOVAKON® V) e hidrofugante (**TEGOVAKON[®] T**).

Aplica-se preferencialmente sobre pedras deterioradas, betão e tijolos com desprendimentos arenosos e juntas estragadas.

FORMA DE UTILIZAÇÃO:

Agente consolidante TEGOVAKON® V Agente consolidante TEGOVAKON® T

Conteúdo de compostos siliciorgâni	cos					
	> 75 % do peso (referido ao ortosilicato) > 75 % do peso (referido ao ortosilicato e metilsiloxano)					
Desprendimento mínimo de gel: (matéria activa) seco até peso constante (20 °C, 60 % de H.R.)	aprox. 34 % do peso aprox. 38 % do peso					
Densidade a 25 °C:	0.93 a 0.97 g/cm ³ 0.92 a 0.96 g/cm ³					
Ponto de inflamação (DIN 53213):	13 °C / 6 °C					
Cor:	incolor (ligeiramente amarelo por vezes)					

ARMAZENAMENTO:

Os agentes consolidantes **TEGOVAKON**[®] podem armazenar-se durante 6 meses, nos recipientes fechados e protegidos contra a humidade assim como a temperaturas não superiores a 30 °C.

ARMAZENAGEM E PROTECÇÃO LABORAL:

Símbolo: F + Xn idem Normas Classificação segundo as normas para líquidos inflamáveis. PREPARAÇÃO E APLICAÇÃO:

30/07/99

167

Tegovakon.4

Antes de aplicar o consolidante **TEGOVAKON**[®] deve determinar-se o grau de deterioração e de sujidade decidindo-se se precisa de uma consolidação prévia antes do processo de limpeza. Em qualquer caso, é necessário uma limpeza prévia profunda das superfícies, mediante jacto de vapor ou água. Em caso de utilizar detergentes químicos, dever-se-á procurar eliminar os restos de detergente e do agente humectante, mediante uma lavagem posterior com abundante água, porque de contrário podem-se produzir descolorações parciais.

Se o fundo está muito deteriorado e primeiro precisa de uma consolidação do material residual, recomendamos um tratamento prévio com o consolidante **TEGOVAKON[®] V**. Uma vez endurecida a superfície, pode iniciar-se a limpeza atrás descrita.

Deve-se ter em conta o seguinte:

- As superfícies a tratar devem ser absorventes, estarem secas e limpas (antes do tratamento é preciso eliminar-se as crostas de sujidade, as algas e os musgos, assim como as eflorescências salinas).
- Proteger os vidros, as janelas e portas, assim como os materiais sensíveis aos solventes, tais como por exemplo, as juntas elásticas, contra os salpicos do agente consolidante.
- Tapar as plantas que se encontram na área de aplicação do produto.
- As superfícies recentemente restauradas devem endurecer primeiro.
- Eliminar todas as camadas de tintas antigas.
- Eliminar a presença de humidade ascensional nas paredes a tratar mediante a aplicação de uma barreira horizontal, por exemplo, mediante a injecção à pressão de CAPILASIL.

O tratamento mais eficaz obtém-se mediante a aplicação em cortina do consolidante sobre a superfície, até à saturação.

Poder-se-á também aplicar o referido produto por pulverização, (5-10 cm).

A aplicação com um rolo de pele de cordeiro, por exemplo, também é possível, se a camada aplicada for suficientemente regular.

Quando as superfícies estão fortemente deterioradas, recomenda-se repetir a aplicação, após a evaporação vez o solvente evaporado.

A aplicação do **TEGOVAKON**[®] também pode efectuar-se por vazio, imersão ou injecção, assim como por meio de compressas.

Para impregnar as zonas consolidantes com **TEGOVAKON®** V, o que recomendamos para proteger de forma eficaz as superfícies contra a posterior penetração de humidade, deve prestar-se atenção a que, o solvente aplicado no tratamento de consolidação precedente se tenha evaporado, para que haja tempo a reconstituir-se o necessário poder de absorção do suporte, para a posterior impregnação.

As temperaturas exteriores adequadas para a aplicação de **TEGOVAKON**[®] situam-se entre os 10 e 25 °C; as temperaturas abaixo de 0 °C são desaconselhaveis.

EMBALAGEM:

Recipientes Standard de 1 1, 5 I e 25 1. Tambores não retornáveis, de 190 kg (200 I), envernizados no interior.

Tegovakon.4

S41 – AGENTE CONSOLIDANTE PARA PEDRA NATURAL

Objectivo:	Consolidar pedras velhas ou novas enfraquecidas ou expostas à erosão								
Aplicação:	Pedras naturais								
	Utilização interior e exterior								
Características:	Produto líquido								
	Invisível								
	Resistente aos raios U.V.								
	Manuseamento seguro								
	Não inflamável								
	Rendimento: 0.2 a 1m² /litro								
	Incolor								
	Odor próprio								
	Uso profissional								
Benefícios:	Fácil utilização								
	Resistente às intempéries								
	Não mancha								
L	Mantém a aparência natural da pedra								

S43 – IMPREC	NANTE PARA LADRILHOS PORCELÂNICOS
Objectivo:	Proteger contra alkali, sujidade, água, óleo e eflorescências
Aplicação:	Ladrilhos porcelânicos
	Utilização interior e exterior
Características:	Produto líquido
	Invisível
	Produto 98 % permeável ao vapor
	Resistente aos raios U.V.
	Manuseamento seguro
	Inflamável
	Rendimento: 25 a 30 m² /litro
	Cor âmbar
	Odor suave
	Insolúvel em água
	Uso profissional
Benefícios:	Fácil utilização
	Não mancha
	Não amarelece com o tempo
	Mantém a aparência natural da porcelana

Sic Ha	cherheitsdatenblatt nach RL 91 andelsname: HMK S 41 STEIN	/155/EWG VERFEST	; IGER OH	Seite 1
				Datum: 28.03.20
÷.	Ston-Aubereitungs- und Firmenbeze	sichnung		
	Angapen zum Produkt		ED IS	ICHTOTALO
	HMK S 41 STEINVERFESTIGER OH Angaben zum Hersteller/Lieferanten		TRAKAMENTO Cont. 505 Jas Cont. 505 Jas Regenera. 255	CE DEFENDES STUESSOAL LDA 400 - Casina Sci of 2000 Suros Hurse Dagus I of 323 55 4252 504 PORTO
	Notfallauskunft: 09441/10044		and the second se	
2.	Zusammensetzung/Angaben zu Best	andteilen		
	Chemische Cherakterisierung (Zubereitu	na); Tetr	aethvisilikathv	drolvsat
	Gefährliche inhaltstoffe (EU);	•		
	CAS-Nr. Stoff	Gehalt	Symbole	R-Sätze
	78-10-4 Tetraethylsilikat 77-58-7 Di-n-butylzinndiaurat	< 50.0 % < 5.0 %	Хл Xn. N	10 - 20 - 36/37 36/38 - 48/22 - 50/53
1	Mögliche Gefahren	<u>ىرىڭ قاي بۇر الىكى بەر تە</u> 200 مەمىرىيە بىرى بەر مەمىرىيە بىرى بەر مەمىرىيە بىرى بەر مەمىرىيە بىرى بەر مەمىرىيە		
	Besondere Gefahrenhinweise für Mensch	und limwalt		
	R 10 Entzündlich R 20 Gesundheitsschädlich beim Einati R 36/37 Reizt die Augen und die Atmungse	men Organe		
•	Erste Hilfe Maßnahmen			
	nach Einatmen: Für flische Luft und Arzt hinzuziehen un	ruhige Lagerung d Stoff genau be	g sorgen, b e i A Frienrien,	temstillstand Atemspende.
	nuch Hautkontakt: Mit viel Wasser und	Seife abwasche	rı, beschmutzt	e Kleidung sofort ausziehen.
	nach Augenkontakt: Augen sofort mit vie	Wasser 10-15	Minuten spüler	n und Arzt hinzuziehen.
	nach Verschlucken: Arzt hinzuziehen un	d Stoff genau be	riennen.	
	Maßnahmen zur Brandbekämpfung			
	geeignete Löschmittel: Wassemebel.	Löschpulver, Sa	nd. Kohlendiox	id.
	ungeeignete Löschmittel: Wasserstrahl.			
	besondere Schutzausrüstung bei der Brai Umgebungsluftunabhängiges Atemschutzge	ndbekämpfung: rät verwenden,	:	
•	Maßnahmen bei unbeabsichtigter Fre	isetzung		
	Personenbezogene Vorsichtsmaßnahmen	r: Persör	nliche Schutza	usrüstung tragen
	Umweltmaßnahmen:	Nicht i gen la	in die Kanalisa ssen. Örtliche	tion oder in Gewässer gelan- behördliche Vorschriften be-
	Verfahrøn zur Reinigung/Aufnahme:	Mit flo aufner mäßio	" ssigkeitsbinder hment aufgenoi hentsorgen	ndem Material (z.B. Kieselgu mmenes Material vorschrifts

	Cont. S05 169 Tela Apert. 255		5000 Euros		Anexo J
Sic		t nach RI	01/156/		
Ha	ndelsname: HMK	S 41 STF			Seite 2/4
1 10)\1 }\1		Datum 28 03 2001
					Datam. 20.03.2001
7	Handhabung und La	gerung			
	Handhabung:	ł		Nur in gut belüfteten Be	reichen verwenden.
	Hinwelse zum Brand- u	Ind Explosion	isschutz:	Zündquellen fernhalten, te Behälter mit Wasser explosible Gemische, au ten Behältern.	nicht rauchen. Gefährde- Kühlen. Bildet mit Luft Ich in leeren, ungereinig-
	Lagerung:			Trocken und kühl lagern	. Nicht im Freien lagern.
8	Expositionsbegrenzi	ing und per	sönliche Sc	hutzausrüstung	
	Persönliche Schutzaut	rüstung			
	Allgemeine Schutz- un	d Hygenlemai	Bnahmen:	Berührung mit den Auge	n und der Haul vermei-
				den. Bei der Arbeit nicht oinatmen.	rauchen. Dämpfe nicht
	Atemschutz: Gai	sfilter Type AX			
	Augenschutz: Sch	utzbrille			
	Körperschutz: Sch	utzilandschuh	e aus Gumm	i oder PVC.	
9	Physikalische und ct	emische El	enschafter		
	Erscheinungsbild		2 - 11 - 01 - 12 (CC /	•	
	Form:	flüssig			
	Farbe:	farblos			
	Geruch:	typisch			
	Sicherheitsrelevante Da	aten			
	Zustandsänderung:				
	Flammpunkt:	40°C		(DIN 51758)	
	Zündtemperatur:	230/0		(DIN 51794)	
	Dichte:	bei 15°C		0,997 (DIN 5	1757)
	Löslichkelt:	ih Wasser		unlöslich	
	Viskosität:	bei 25°C		ca. 1,6 mPa.s	
	Zusätzliche Hinweise;	Explosions	grenzen für fre	eigesetztes Ethanol; 3,5 - 15	Vol%
10	Stabilität und Reaktiv	itat i		**************************************	
	Zu vermeidende Stoffe:		Reagiert m Säuren unt	it Wasser in Gegenwart vor ter Bildung von Ethanol.	basischen Stoffen oder
	Gefährliche Zersetzung	sprpdukte:	Keine bei b	estimmungsgemäßer Anwe	ndung bekannt.
	Zusätzliche Hinweise:		Bel Gebrau	uch Bildung explosionsfähig	er/leichtentzündlicher
	1.1 Marana and an and a second		Dampt-Luf	tgemische möglich	
1	Angaben zur Toxikolo	ogie			
	Allgemeines:		Produkt nic	cht geprüft. R- und S-Sätze i	n Punkt 15 beachten.
	Zusätzliche toxilogisch	Hinweise:	Alkoxisilan dürfen nich	: Reizt die Augen und Atmur it eingeatmet werden, da mit	ngsorgane. Aerosolnebel t Lungenschädigung zu
			rechnen ist zeid auf Sc fettend, na	. Hydrolijseprodukt; Ethanol hleimhäute, schwach reizen rkotisch, Leberschäden mög	wirkt laut Literatur rei- d auf die Haut, hautent- lich.
		1	· · · · · · · · · · · · · · · · · · ·		

Anexo 1

 BRIGHTSTONE
TRATAMENTO DE SUPERINCIES UN FEBSORI LOA
Com. 505 169 800 - 500/ 500/ 500 - 5000 Euros
Telejone 229 0 5 523
Aden: 2000 1/4202-401 PORTO

Sicherheitsdatenblatt nach RE 91/155/ 'EWG Handelsname: HMK S 41 STEINVERFESTIGER OH

-

Seite 3/4

S.3

Datum: 28.03.2001

12	Angaben zur Ökologie						
	Angaben zur Elimination						
	Zusätzliche Hinweise:	Durch Hydrolyse: Kieselsäure und Ethanol.					
	Verhalten in Kläranlagen:	Größere Mengen nicht in Klaranlagen einbringen.					
	Allgemeines:	Nicht in Gewässer und in den Boden gelangen lassen.					
13	Hinweise zur Entsorgu	2 ¹					
	Produkt						
	Empfehlung:	Vorschriftsmäßige Beseitigung durch Verbrennen in einer Sonderabrall- Verbrennungsanlage. Ortliche behördliche Vorschriften sind zu beachten.					
	Ungereinigte Verpackung	en					
	Empfehlung:	Die entleerten Gebinde sind unter Beachtung der jeweils geltenden örtlichen Bestimmungen einer Wiederverwertung zuzuführen.					
14	Angaben zum Transpo						
	Landtransport GGVS / AD	R und GGVE IRID					
	Straße GGVS /ADR:						
	Klasse: Gefahmummer. UN-Nr. Technischer Name: Gefahrzettel: a-Randnummer:	 3 Ziffer 31 c 30 1292 Tetraethylsiticat, Gemisch 3 Stoffe in zusammengesetzter Verpackung bis zu 5 Liter je Innenverpackung und bis zu 45 Liter je Versandstück. 					
	Bahn GGVE /RID:						
	Kiasse: Gefahrnummer: UN-Nr. Technischer Name: Gefahrzeitel: a-Randnummer:	 3 Ziffer 31 c 30 1292 Tetraethylsilicat, Gemisch 3 Stoffe in zusammengesetzter Verpackung bis zu 5 Liter je Innenverpackung und bis zu 46 Liter je Versandstück. 					
	Seeschifftransport GGVS	se/IMDG-Code					
	Klasse: Page: Verpackungsgruppe: UN-Nr. Propper Shipping Name: Gefahrzette!: Label: EMS-Nr: MFAG-Nr.	3.3 3384 III 1292 Tetraethyl silicate mixture (contains Tetraethyl silicate and Di-n-butyl-tin-dilaurate) 3: entzündbare Fiüssigkeit / 3, Marine Pollutant 3-06 360					

							•		
ha	i	02	5	1	6	::	4	1	

MOLLER-CHEMIE

Handelsname: HMK S 41 STEINVERFESTIGER OH

i

i

i

Seite 4/4

Anexo 1

S.4

Datum: 28.03.2001

		······	· · · · · · · · · · · · · · · · · · ·					
15	Vorschriften Kennzelchnung (Fl	3)						
	Rennizaterinizing (c.	~)						
	Entzündlich - Xn, Ge	sundhe	itsschädlich - N. Umweltgefährlich.					
	B-Sätze	10	entzündlich					
		20	Gesundheitsschädlich beim Einatmen					
		36/37	Reist die Augen und die Atmundernane					
		50/07						
	S-Sätze	26	l Beli Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt kodsuttieren					
		36	Rei der Arbeit geeignete Schutzhandschube tragen					
	Nationale Vorschrif	iten:						
	Gefahrklasse nach Wassergefährdung	VbF;						
	11 40001 90181 1001 19							

16 Sonstige Angaben

Diese Angaben beschreiben ausschließlich die Sicherheitsanforderungen des Produkts und stützt sich auf den heutigen Stand unserer Kenntnisse. Sie stellen keine Zusicherung von Eigenschaften des beschriebenen Produkt in Sinne der gesetzlichen Gewährleistungsvorschriften dar. Eigenschaften des Produkts lesen Sie bitte in den feweiligen Produktblättern nach.

ANEXO 2

PROVETE IMC 1.1				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA	
12	53	4	1	2005	221,09	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	55	4	1	2005	222,67	1,65	2	0,1826	0,1020	0,1826	0,1020	1,65
13	0	4	1	2005	223,93	2,90	7	0,3416	0,1834	0,3416	0,1834	2,90
13	4	4	1	2005	224,54	3,70	11	0,4282	0,2228	0,4282	0,2228	3,70
13	14	4	1	2005	225,80	4,95	21	0,5916	0,3042	0,5916	0,3042	4,95
13	18	4	1	2005	226,27	5,40	25	0,6455	0,3346	0,6455	0,3346	5,40
13	23	4	1	2005	226,67	5,79	30	0,7071	0,3604	0,7071	0,3604	5,79
13	26	4	1	2005	226,97	5,97	33	0,7416	0,3798	0,7416	0,3798	5,97
13	31	4	1	2005	227,29		38	0,7958	0,4004	0,7958	0,4004	
14	0	4	1	2005	227,39		67	1,0567	0,4069	1,0567	0,4069	
15	3	4	1	2005	227,41		130	1,4720	0,4082	1,4720	0,4082	
19	41	4	1	2005	227,52		408	2,6077	0,4153	2,6077	0,4153	
9	6	5	1	2005	227,69		1213	4,4963	0,4263	4,4963	0,4263	
13	1	5	1	2005	227,72		1448	4,9126	0,4282	4,9126	0,4282	
23	59	5	1	2005	227,79		2106	5,9245	0,4327	5,9245	0,4327	
13	15	6	1	2005	227,87		2902	6,9546	0,4379	6,9546	0,4379	
20	25	6	1	2005	227,89		3332	7,4521	0,4392	7,4521	0,4392	
22	16	7	1	2005	227,97		4883	9,0213	0,4444	9,0213	0,4444	
23	18	8	1	2005	228,02		6385	10,3158	0,4476	10,3158	0,4476	
16	4	10	1	2005	228,06		8831	12,1319	0,4502	12,1319	0,4502	
19	58	11	1	2005	228,12		10505	13,2319	0,4540	13,2319	0,4540	

Quadro A2.1 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.1.

ALTURA - 5,97 cm

Figura A2.1 Ensaio de absorção de água por capilaridade do provete IMC 1.1.

PROVETE IMC 1.2					PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
8	38	14	12	2004	220,75	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
8	42	14	12	2004	223,38	2,55	4	0,2582	0,1699	0,2582	0,1699	2,55
8	46	14	12	2004	224,31	3,50	8	0,3651	0,2299	0,3651	0,2299	3,50
8	50	14	12	2004	225,01	4,15	12	0,4472	0,2751	0,4472	0,2751	4,15
8	55	14	12	2004	225,67	4,60	17	0,5323	0,3178	0,5323	0,3178	4,60
9	0	14	12	2004	226,32	5,60	22	0,6055	0,3597	0,6055	0,3597	5,60
9	7	14	12	2004	227,24	6,03	29	0,6952	0,4192	0,6952	0,4192	6,03
9	23	14	12	2004	227,27		45	0,8660	0,4211	0,8660	0,4211	
10	13	14	12	2004	227,28		95	1,2583	0,4218	1,2583	0,4218	
12	25	14	12	2004	227,36		227	1,9451	0,4269	1,9451	0,4269	
16	12	14	12	2004	227,37		454	2,7508	0,4276	2,7508	0,4276	
23	43	14	12	2004	227,52		905	3,8837	0,4373	3,8837	0,4373	
8	58	15	12	2004	227,59		1460	4,9329	0,4418	4,9329	0,4418	
18	31	15	12	2004	227,69		2033	5,8209	0,4482	5,8209	0,4482	
9	13	16	12	2004	227,91		2915	6,9702	0,4624	6,9702	0,4624	
18	52	16	12	2004	227,96		3494	7,6311	0,4657	7,6311	0,4657	
9	15	17	12	2004	228,08		4357	8,5215	0,4734	8,5215	0,4734	
12	53	18	12	2004	228,10		6015	10,0125	0,4747	10,0125	0,4747	
18	55	19	12	2004	228,20		7817	11,4142	0,4812	11,4142	0,4812	
9	15	20	12	2004	228,22		8677	12,0257	0,4825	12,0257	0,4825	
9	46	21	12	2004	228,25		10148	13,0051	0,4844	13,0051	0,4844	

Quadro A2.2 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.2.

Figura A2.2 Ensaio de absorção de água por capilaridade do provete IMC 1.2.
	PROV	ETE IM	C 1.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
8	39	14	12	2004	218,34	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
8	43	14	12	2004	221,37	2,80	4	0,2582	0,1957	0,2582	0,1957	2,80
8	47	14	12	2004	222,35	3,80	8	0,3651	0,2590	0,3651	0,2590	3,80
8	51	14	12	2004	223,11	4,55	12	0,4472	0,3081	0,4472	0,3081	4,55
8	55	14	12	2004	223,83	5,20	16	0,5164	0,3546	0,5164	0,3546	5,20
9	1	14	12	2004	224,58	5,95	22	0,6055	0,4030	0,6055	0,4030	5,95
9	7	14	12	2004	225,12	5,99	28	0,6831	0,4379	0,6831	0,4379	5,99
9	23	14	12	2004	225,19		44	0,8563	0,4424	0,8563	0,4424	
10	14	14	12	2004	225,22		95	1,2583	0,4444	1,2583	0,4444	
12	26	14	12	2004	225,32		227	1,9451	0,4508	1,9451	0,4508	
16	12	14	12	2004	225,42		453	2,7477	0,4573	2,7477	0,4573	
23	44	14	12	2004	225,51		905	3,8837	0,4631	3,8837	0,4631	
8	59	15	12	2004	225,64		1460	4,9329	0,4715	4,9329	0,4715	
18	32	15	12	2004	225,79		2033	5,8209	0,4812	5,8209	0,4812	
9	13	16	12	2004	225,96		2914	6,9690	0,4922	6,9690	0,4922	
18	53	16	12	2004	226,00		3494	7,6311	0,4947	7,6311	0,4947	
9	15	17	12	2004	226,08		4356	8,5206	0,4999	8,5206	0,4999	
12	53	18	12	2004	226,16		6014	10,0117	0,5051	10,0117	0,5051	
18	56	19	12	2004	226,25		7817	11,4142	0,5109	11,4142	0,5109	l
9	16	20	12	2004	226,27		8677	12,0257	0,5122	12,0257	0,5122	l
9	46	21	12	2004	226,29		10147	13,0045	0,5135	13,0045	0,5135	ĺ

Quadro A2.3 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.3.

Figura A2.3 Ensaio de absorção de água por capilaridade do provete IMC 1.3.

	PROV	ETE IM	C 1.4		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
8	39	14	12	2004	198,46	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
8	43	14	12	2004	201,75	2,75	4	0,2582	0,2125	0,2582	0,2125	2,75
8	47	14	12	2004	202,87	3,85	8	0,3651	0,2848	0,3651	0,2848	3,85
8	51	14	12	2004	203,77	4,60	12	0,4472	0,3430	0,4472	0,3430	4,60
8	56	14	12	2004	204,62	5,35	17	0,5323	0,3979	0,5323	0,3979	5,35
9	2	14	12	2004	205,33	5,50	23	0,6191	0,4437	0,6191	0,4437	5,50
9	8	14	12	2004	205,38		29	0,6952	0,4469	0,6952	0,4469	
9	23	14	12	2004	205,42		44	0,8563	0,4495	0,8563	0,4495	
10	14	14	12	2004	205,47		95	1,2583	0,4528	1,2583	0,4528	
12	26	14	12	2004	205,57		227	1,9451	0,4592	1,9451	0,4592	
16	13	14	12	2004	205,69		454	2,7508	0,4670	2,7508	0,4670	
23	44	14	12	2004	205,79		905	3,8837	0,4734	3,8837	0,4734	
8	59	15	12	2004	205,96		1460	4,9329	0,4844	4,9329	0,4844	
18	32	15	12	2004	206,11		2033	5,8209	0,4941	5,8209	0,4941	
9	14	16	12	2004	206,25		2915	6,9702	0,5031	6,9702	0,5031	
18	53	16	12	2004	206,27		3494	7,6311	0,5044	7,6311	0,5044	
9	16	17	12	2004	206,35		4357	8,5215	0,5096	8,5215	0,5096	
12	54	18	12	2004	206,40		6015	10,0125	0,5128	10,0125	0,5128	
18	57	19	12	2004	206,47		7818	11,4149	0,5173	11,4149	0,5173	
9	17	20	12	2004	206,51		8678	12,0264	0,5199	12,0264	0,5199	
9	47	21	12	2004	206,58		10148	13,0051	0,5244	13,0051	0,5244	

Quadro A2.4 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.4.

Figura A2.4 Ensaio de absorção de água por capilaridade do provete IMC 1.4.

-												
	PROVE	TE IM	C 2.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
8	40	14	12	2004	214,37	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
8	44	14	12	2004	217,60	2,50	4	0,2582	0,2086	0,2582	0,2086	2,50
8	48	14	12	2004	218,65	3,40	8	0,3651	0,2764	0,3651	0,2764	3,40
8	52	14	12	2004	219,58	4,20	12	0,4472	0,3365	0,4472	0,3365	4,20
8	57	14	12	2004	220,49	4,85	17	0,5323	0,3953	0,5323	0,3953	4,85
9	2	14	12	2004	221,24	5,50	22	0,6055	0,4437	0,6055	0,4437	5,50
9	8	14	12	2004	222,09	5,99	28	0,6831	0,4986	0,6831	0,4986	5,99
9	24	14	12	2004	222,47		44	0,8563	0,5232	0,8563	0,5232	
10	14	14	12	2004	222,52		94	1,2517	0,5264	1,2517	0,5264	
12	27	14	12	2004	222,59		227	1,9451	0,5309	1,9451	0,5309	
16	13	14	12	2004	222,68		453	2,7477	0,5367	2,7477	0,5367	
23	45	14	12	2004	222,79		905	3,8837	0,5438	3,8837	0,5438	
9	0	15	12	2004	222,95		1460	4,9329	0,5542	4,9329	0,5542	
18	33	15	12	2004	223,11		2033	5,8209	0,5645	5,8209	0,5645	
9	14	16	12	2004	223,27		2914	6,9690	0,5748	6,9690	0,5748	
18	54	16	12	2004	223,28		3494	7,6311	0,5755	7,6311	0,5755	
9	17	17	12	2004	223,39		4357	8,5215	0,5826	8,5215	0,5826	
12	54	18	12	2004	223,43		6014	10,0117	0,5852	10,0117	0,5852	
18	57	19	12	2004	223,49		7817	11,4142	0,5890	11,4142	0,5890	
9	18	20	12	2004	223,56		8678	12,0264	0,5936	12,0264	0,5936	
9	47	21	12	2004	223,63		10147	13,0045	0,5981	13,0045	0,5981	

Quadro A2.5 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.1.

Figura A2.5 Ensaio de absorção de água por capilaridade do provete IMC 2.1.

	PROVE	TE IM	C 2.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
8	40	14	12	2004	211,31	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
8	45	14	12	2004	215,20	2,95	5	0,2887	0,2512	0,2887	0,2512	2,95
8	49	14	12	2004	216,42	3,70	9	0,3873	0,3300	0,3873	0,3300	3,70
8	53	14	12	2004	217,47	4,65	13	0,4655	0,3979	0,4655	0,3979	4,65
8	58	14	12	2004	218,48	5,35	18	0,5477	0,4631	0,5477	0,4631	5,35
9	3	14	12	2004	219,31	6,00	23	0,6191	0,5167	0,6191	0,5167	6,00
9	9	14	12	2004	219,87		29	0,6952	0,5529	0,6952	0,5529	
9	24	14	12	2004	219,96		44	0,8563	0,5587	0,8563	0,5587	
10	15	14	12	2004	220,02		95	1,2583	0,5626	1,2583	0,5626	
12	27	14	12	2004	220,10		227	1,9451	0,5677	1,9451	0,5677	
16	14	14	12	2004	220,20		454	2,7508	0,5742	2,7508	0,5742	
23	46	14	12	2004	220,33		906	3,8859	0,5826	3,8859	0,5826	
9	0	15	12	2004	220,48		1460	4,9329	0,5923	4,9329	0,5923	
18	34	15	12	2004	220,68		2034	5,8224	0,6052	5,8224	0,6052	
9	15	16	12	2004	220,81		2915	6,9702	0,6136	6,9702	0,6136	
18	55	16	12	2004	220,87		3495	7,6322	0,6175	7,6322	0,6175	
9	17	17	12	2004	220,96		4357	8,5215	0,6233	8,5215	0,6233	
12	54	18	12	2004	221,02		6014	10,0117	0,6271	10,0117	0,6271	
18	58	19	12	2004	221,09		7818	11,4149	0,6317	11,4149	0,6317	
9	19	20	12	2004	221,12		8679	12,0271	0,6336	12,0271	0,6336	
9	48	21	12	2004	221,18		10148	13,0051	0,6375	13,0051	0,6375	

Quadro A2.6 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.2.

Figura A2.6 Ensaio de absorção de água por capilaridade do provete IMC 2.2.

	PROVE	TE IM	C 2.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	10	14	12	2004	211,49	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	13	14	12	2004	214,74	2,35	3	0,2236	0,2099	0,2236	0,2099	2,35
9	17	14	12	2004	216,29	3,40	7	0,3416	0,3100	0,3416	0,3100	3,40
9	21	14	12	2004	217,46	4,35	11	0,4282	0,3856	0,4282	0,3856	4,35
9	25	14	12	2004	218,53	4,95	15	0,5000	0,4547	0,5000	0,4547	4,95
9	29	14	12	2004	219,27	5,80	19	0,5627	0,5025	0,5627	0,5025	5,80
9	33	14	12	2004	219,94	6,00	23	0,6191	0,5458	0,6191	0,5458	6,00
9	43	14	12	2004	220,24		33	0,7416	0,5651	0,7416	0,5651	
9	51	14	12	2004	220,24		41	0,8266	0,5651	0,8266	0,5651	
10	9	14	12	2004	220,24		59	0,9916	0,5651	0,9916	0,5651	
11	34	14	12	2004	220,34		144	1,5492	0,5716	1,5492	0,5716	
16	15	14	12	2004	220,52		425	2,6615	0,5832	2,6615	0,5832	
23	46	14	12	2004	220,65		876	3,8210	0,5916	3,8210	0,5916	
9	1	15	12	2004	220,83		1431	4,8836	0,6032	4,8836	0,6032	
18	34	15	12	2004	221,02		2004	5,7793	0,6155	5,7793	0,6155	
9	16	16	12	2004	221,21		2886	6,9354	0,6278	6,9354	0,6278	
18	55	16	12	2004	221,24		3465	7,5993	0,6297	7,5993	0,6297	
9	18	17	12	2004	221,32		4328	8,4931	0,6349	8,4931	0,6349	
12	55	18	12	2004	221,45		5985	9,9875	0,6433	9,9875	0,6433	
18	59	19	12	2004	221,45		7789	11,3937	0,6433	11,3937	0,6433	
9	20	20	12	2004	221,58		8650	12,0069	0,6517	12,0069	0,6517	
9	49	21	12	2004	221,61		10119	12,9865	0,6536	12,9865	0,6536	

Quadro A2.7 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.3.

POROSIDADE LIVRE - 10,10% 0,70 N_{48} 0,60 0,50 0,40

Figura A2.7 Ensaio de absorção de água por capilaridade do provete IMC 2.3.

	PROVE	TE IM	C 2.4		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	10	14	12	2004	209,04	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	13	14	12	2004	212,67	2,65	3	0,2236	0,2345	0,2236	0,2345	2,65
9	17	14	12	2004	214,21	3,75	7	0,3416	0,3339	0,3416	0,3339	3,75
9	21	14	12	2004	215,46	4,60	11	0,4282	0,4146	0,4282	0,4146	4,60
9	26	14	12	2004	216,50	5,40	16	0,5164	0,4818	0,5164	0,4818	5,40
9	29	14	12	2004	217,33	5,95	19	0,5627	0,5354	0,5627	0,5354	5, 9 5
9	33	14	12	2004	217,83		23	0,6191	0,5677	0,6191	0,5677	
9	44	14	12	2004	217,89		34	0,7528	0,5716	0,7528	0,5716	
9	52	14	12	2004	217,91		42	0,8367	0,5729	0,8367	0,5729	
10	10	14	12	2004	217,93		60	1,0000	0,5742	1,0000	0,5742	
11	34	14	12	2004	217,99		144	1,5492	0,5781	1,5492	0,5781	
16	15	14	12	2004	218,10		425	2,6615	0,5852	2,6615	0,5852	
23	47	14	12	2004	218,35		877	3,8232	0,6013	3,8232	0,6013	
9	2	15	12	2004	218,55		1432	4,8854	0,6142	4,8854	0,6142	
18	35	15	12	2004	218,76		2005	5,7807	0,6278	5,7807	0,6278	
9	17	16	12	2004	218,91		2887	6,9366	0,6375	6,9366	0,6375	
18	56	16	12	2004	218,94		3466	7,6004	0,6394	7,6004	0,6394	
9	19	17	12	2004	219,02		4329	8,4941	0,6446	8,4941	0,6446	
12	55	18	12	2004	219,11		5985	9,9875	0,6504	9,9875	0,6504	
19	0	19	12	2004	219,13		7790	11,3944	0,6517	11,3944	0,6517	
9	20	20	12	2004	219,22		8650	12,0069	0,6575	12,0069	0,6575	
9	49	21	12	2004	219,25		10119	12,9865	0,6594	12,9865	0,6594	

Quadro A2.8 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.4.

Figura A2.8 Ensaio de absorção de água por capilaridade do provete IMC 2.4.

	PROV	ete im	C 3.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	11	14	12	2004	225,51	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	14	14	12	2004	227,15	1,80	3	0,2236	0,1059	0,2236	0,1059	1,80
9	18	14	12	2004	227,72	2,35	7	0,3416	0,1427	0,3416	0,1427	2,35
9	26	14	12	2004	228,53	3,45	15	0,5000	0,1951	0,5000	0,1951	3,45
9	34	14	12	2004	229,12	4,10	23	0,6191	0,2332	0,6191	0,2332	4,10
9	44	14	12	2004	229,75	5,05	33	0,7416	0,2738	0,7416	0,2738	5,05
9	52	14	12	2004	230,24	5,60	41	0,8266	0,3055	0,8266	0,3055	5,60
10	0	14	12	2004	230,62	5,97	49	0,9037	0,3300	0,9037	0,3300	5,97
10	10	14	12	2004	230,86		59	0,9916	0,3455	0,9916	0,3455	
11	34	14	12	2004	230,90		143	1,5438	0,3481	1,5438	0,3481	
16	16	14	12	2004	230,97		425	2,6615	0,3526	2,6615	0,3526	
23	48	14	12	2004	231,02		877	3,8232	0,3559	3,8232	0,3559	
9	4	15	12	2004	231,06		1433	4,8871	0,3585	4,8871	0,3585	
18	36	15	12	2004	231,13		2005	5,7807	0,3630	5,7807	0,3630	
9	17	16	12	2004	231,22		2886	6,9354	0,3688	6,9354	0,3688	
18	57	16	12	2004	231,28		3466	7,6004	0,3727	7,6004	0,3727	
9	20	17	12	2004	231,39		4329	8,4941	0,3798	8,4941	0,3798	
12	56	18	12	2004	231,51		5985	9,9875	0,3875	9,9875	0,3875	
19	0	19	12	2004	231,59		7789	11,3937	0,3927	11,3937	0,3927	
9	21	20	12	2004	231,61		8650	12,0069	0,3940	12,0069	0,3940	
9	50	21	12	2004	231,64		10119	12,9865	0,3959	12,9865	0,3959	

Quadro A2.9 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.1.

	PROV	ete im	C 3.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	11	14	12	2004	226,63	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	15	14	12	2004	228,39	1,90	4	0,2582	0,1137	0,2582	0,1137	1,90
9	18	14	12	2004	228,95	2,40	7	0,3416	0,1498	0,3416	0,1498	2,40
9	27	14	12	2004	229,82	3,55	16	0,5164	0,2060	0,5164	0,2060	3,55
9	34	14	12	2004	230,41	4,15	23	0,6191	0,2441	0,6191	0,2441	4,15
9	45	14	12	2004	231,11	5,10	34	0,7528	0,2893	0,7528	0,2893	5,10
9	53	14	12	2004	231,59	5,82	42	0,8367	0,3204	0,8367	0,3204	5,82
10	1	14	12	2004	231,93	6,03	50	0,9129	0,3423	0,9129	0,3423	6,03
10	11	14	12	2004	232,04		60	1,0000	0,3494	1,0000	0,3494	
11	35	14	12	2004	232,12		144	1,5492	0,3546	1,5492	0,3546	
16	16	14	12	2004	232,19		425	2,6615	0,3591	2,6615	0,3591	
23	48	14	12	2004	232,25		877	3,8232	0,3630	3,8232	0,3630	
9	5	15	12	2004	232,32		1434	4,8888	0,3675	4,8888	0,3675	
18	36	15	12	2004	232,36		2005	5,7807	0,3701	5,7807	0,3701	
9	18	16	12	2004	232,47		2887	6,9366	0,3772	6,9366	0,3772	
18	57	16	12	2004	232,52		3466	7,6004	0,3804	7,6004	0,3804	
9	20	17	12	2004	232,60		4329	8,4941	0,3856	8,4941	0,3856	
12	56	18	12	2004	232,73		5985	9,9875	0,3940	9,9875	0,3940	
19	1	19	12	2004	232,77		7790	11,3944	0,3966	11,3944	0,3966	
9	21	20	12	2004	232,81		8650	12,0069	0,3991	12,0069	0,3991	
9	50	21	12	2004	232,83		10119	12,9865	0,4004	12,9865	0,4004	

Quadro A2.10 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.2.

Figura A2.10 Ensaio de absorção de água por capilaridade do provete IMC 3.2.

TEMPO^{-1/2} (h^{-1/2})

łο

0,00

-												
	PROV	ete im	C 4.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	11	14	12	2004	226,95	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	15	14	12	2004	228,35	1,80	4	0,2582	0,0904	0,2582	0,0904	1,80
9	19	14	12	2004	228,78	2,40	8	0,3651	0,1182	0,3651	0,1182	2,40
9	27	14	12	2004	229,53	3,50	16	0,5164	0,1666	0,5164	0,1666	3,50
9	35	14	12	2004	230,05	4,25	24	0,6325	0,2002	0,6325	0,2002	4,25
9	45	14	12	2004	230,63	4,75	34	0,7528	0,2377	0,7528	0,2377	4,75
9	54	14	12	2004	231,05	5,55	43	0,8466	0,2648	0,8466	0,2648	5,55
10	1	14	12	2004	231,33	5,86	50	0,9129	0,2829	0,9129	0,2829	5,86
10	12	14	12	2004	231,62	5,97	61	1,0083	0,3016	1,0083	0,3016	5,97
11	35	14	12	2004	231,73		144	1,5492	0,3087	1,5492	0,3087	
16	17	14	12	2004	231,74		426	2,6646	0,3094	2,6646	0,3094	
23	49	14	12	2004	231,77		878	3,8254	0,3113	3,8254	0,3113	
9	5	15	12	2004	231,84		1434	4,8888	0,3158	4,8888	0,3158	
18	37	15	12	2004	231,84		2006	5,7822	0,3158	5,7822	0,3158	
9	18	16	12	2004	231,91		2887	6,9366	0,3204	6,9366	0,3204	
18	58	16	12	2004	231,95		3467	7,6015	0,3229	7,6015	0,3229	
9	21	17	12	2004	232,04		4330	8,4951	0,3287	8,4951	0,3287	
12	56	18	12	2004	232,14		5985	9,9875	0,3352	9,9875	0,3352	
19	1	19	12	2004	232,22		7790	11,3944	0,3404	11,3944	0,3404	
9	22	20	12	2004	232,24		8651	12,0076	0,3417	12,0076	0,3417	
9	51	21	12	2004	232,27		10120	12,9872	0,3436	12,9872	0,3436	

Quadro A2.11 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.1.

Figura A2.11 Ensaio de absorção de água por capilaridade do provete IMC 4.1.

	PROV	ete im	C 4.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	12	14	12	2004	226,40	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	16	14	12	2004	228,04	2,05	4	0,2582	0,1059	0,2582	0,1059	2,05
9	19	14	12	2004	228,44	2,40	7	0,3416	0,1318	0,3416	0,1318	2,40
9	28	14	12	2004	229,16	3,55	16	0,5164	0,1783	0,5164	0,1783	3,55
9	36	14	12	2004	229,66	4,25	24	0,6325	0,2106	0,6325	0,2106	4,25
9	46	14	12	2004	230,23	5,15	34	0,7528	0,2474	0,7528	0,2474	5,15
9	55	14	12	2004	230,63	5,79	43	0,8466	0,2732	0,8466	0,2732	5,79
10	2	14	12	2004	230,90	5,97	50	0,9129	0,2906	0,9129	0,2906	5,97
10	12	14	12	2004	231,09		60	1,0000	0,3029	1,0000	0,3029	
11	36	14	12	2004	231,14		144	1,5492	0,3061	1,5492	0,3061	
16	17	14	12	2004	231,20		425	2,6615	0,3100	2,6615	0,3100	
23	49	14	12	2004	231,22		877	3,8232	0,3113	3,8232	0,3113	
9	6	15	12	2004	231,27		1434	4,8888	0,3145	4,8888	0,3145	
18	38	15	12	2004	231,28		2006	5,7822	0,3152	5,7822	0,3152	
9	19	16	12	2004	231,36		2887	6,9366	0,3204	6,9366	0,3204	
18	59	16	12	2004	231,36		3467	7,6015	0,3204	7,6015	0,3204	
9	21	17	12	2004	231,43		4329	8,4941	0,3249	8,4941	0,3249	
12	57	18	12	2004	231,52		5985	9,9875	0,3307	9,9875	0,3307	
19	2	19	12	2004	231,61		7790	11,3944	0,3365	11,3944	0,3365	
9	22	20	12	2004	231,65		8650	12,0069	0,3391	12,0069	0,3391	
9	52	21	12	2004	231,68		10120	12,9872	0,3410	12,9872	0,3410	

SECÇÃO - 15,4830 cm²

POROSIDADE LIVRE - 5,27%

ALTURA - 5,97 cm

Quadro A2.12 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.2.

Figura A2.12 Ensaio de absorção de água por capilaridade do provete IMC 4.2.

	PROV	ete im	C 4.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	37	14	12	2004	228,99	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	39	14	12	2004	230,06	1,25	2	0,1826	0,0691	0,1826	0,0691	1,25
9	47	14	12	2004	231,01	2,60	10	0,4082	0,1305	0,4082	0,1305	2,60
9	56	14	12	2004	231,64	3,65	19	0,5627	0,1712	0,5627	0,1712	3,65
10	3	14	12	2004	232,04	4,20	26	0,6583	0,1970	0,6583	0,1970	4,20
10	16	14	12	2004	232,66	5,00	39	0,8062	0,2370	0,8062	0,2370	5,00
10	25	14	12	2004	233,03	5,76	48	0,8944	0,2609	0,8944	0,2609	5,76
10	32	14	12	2004	233,26	5,96	55	0,9574	0,2758	0,9574	0,2758	5,96
10	45	14	12	2004	233,55	6,01	68	1,0646	0,2945	1,0646	0,2945	6,01
11	36	14	12	2004	233,61		119	1,4083	0,2984	1,4083	0,2984	
16	18	14	12	2004	233,69		401	2,5852	0,3036	2,5852	0,3036	
23	50	14	12	2004	233,69		853	3,7705	0,3036	3,7705	0,3036	
9	7	15	12	2004	233,74		1410	4,8477	0,3068	4,8477	0,3068	
18	38	15	12	2004	233,75		1981	5,7460	0,3074	5,7460	0,3074	
9	20	16	12	2004	233,79		2863	6,9077	0,3100	6,9077	0,3100	
19	0	16	12	2004	233,81		3443	7,5752	0,3113	7,5752	0,3113	
9	22	17	12	2004	233,88		4305	8,4705	0,3158	8,4705	0,3158	
12	57	18	12	2004	233,96		5960	9,9666	0,3210	9,9666	0,3210	
19	2	19	12	2004	234,04		7765	11,3761	0,3262	11,3761	0,3262	
9	23	20	12	2004	234,07		8626	11,9903	0,3281	11,9903	0,3281	
9	52	21	12	2004	234,11		10095	12,9711	0,3307	12,9711	0,3307	

Quadro A2.13 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.3.

Figura A2.13 Ensaio de absorção de água por capilaridade do provete IMC 4.3.

	PROV	ete im	C 4.4		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	37	14	12	2004	229,60	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	40	14	12	2004	230,70	1,40	3	0,2236	0,0710	0,2236	0,0710	1,40
9	48	14	12	2004	231,49	2,65	11	0,4282	0,1221	0,4282	0,1221	2,65
9	56	14	12	2004	232,05	3,50	19	0,5627	0,1582	0,5627	0,1582	3,50
10	3	14	12	2004	232,44	4,05	26	0,6583	0,1834	0,6583	0,1834	4,05
10	17	14	12	2004	233,01	4,85	40	0,8165	0,2202	0,8165	0,2202	4,85
10	25	14	12	2004	233,33	5,45	48	0,8944	0,2409	0,8944	0,2409	5,45
10	33	14	12	2004	233,55	5,76	56	0,9661	0,2551	0,9661	0,2551	5,76
10	46	14	12	2004	233,88	6,02	69	1,0724	0,2764	1,0724	0,2764	6,02
11	37	14	12	2004	234,01		120	1,4142	0,2848	1,4142	0,2848	
16	19	14	12	2004	234,06		402	2,5884	0,2881	2,5884	0,2881	
23	51	14	12	2004	234,08		854	3,7727	0,2893	3,7727	0,2893	
9	7	15	12	2004	234,13		1410	4,8477	0,2926	4,8477	0,2926	
18	39	15	12	2004	234,13		1982	5,7475	0,2926	5,7475	0,2926	
9	20	16	12	2004	234,18		2863	6,9077	0,2958	6,9077	0,2958	
19	0	16	12	2004	234,21		3443	7,5752	0,2977	7,5752	0,2977	
9	23	17	12	2004	234,26		4306	8,4715	0,3010	8,4715	0,3010	
12	57	18	12	2004	234,35		5960	9,9666	0,3068	9,9666	0,3068	
19	3	19	12	2004	234,43		7766	11,3769	0,3120	11,3769	0,3120	
9	24	20	12	2004	234,46		8627	11,9910	0,3139	11,9910	0,3139	
9	53	21	12	2004	234,49		10096	12,9718	0,3158	12,9718	0,3158	

Quadro A2.14 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.4.

Figura A2.14 Ensaio de absorção de água por capilaridade do provete IMC 4.4.

	PROV	ete im	C 5.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	37	14	12	2004	227,85	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	40	14	12	2004	229,13	1,50	3	0,2236	0,0827	0,2236	0,0827	1,50
9	48	14	12	2004	230,19	2,95	11	0,4282	0,1511	0,4282	0,1511	2,95
9	57	14	12	2004	230,87	3,75	20	0,5774	0,1951	0,5774	0,1951	3,75
10	4	14	12	2004	231,36	4,65	27	0,6708	0,2267	0,6708	0,2267	4,65
10	17	14	12	2004	232,12	5,70	40	0,8165	0,2758	0,8165	0,2758	5,70
10	26	14	12	2004	232,51	6,00	49	0,9037	0,3010	0,9037	0,3010	6,00
10	33	14	12	2004	232,59		56	0,9661	0,3061	0,9661	0,3061	
10	46	14	12	2004	232,63		69	1,0724	0,3087	1,0724	0,3087	
11	37	14	12	2004	232,65		120	1,4142	0,3100	1,4142	0,3100	
16	19	14	12	2004	232,71		402	2,5884	0,3139	2,5884	0,3139	
23	52	14	12	2004	232,73		855	3,7749	0,3152	3,7749	0,3152	
9	8	15	12	2004	232,78		1411	4,8494	0,3184	4,8494	0,3184	
18	40	15	12	2004	232,80		1983	5,7489	0,3197	5,7489	0,3197	
9	21	16	12	2004	232,88		2864	6,9089	0,3249	6,9089	0,3249	
19	1	16	12	2004	232,90		3444	7,5763	0,3262	7,5763	0,3262	
9	23	17	12	2004	232,98		4306	8,4715	0,3313	8,4715	0,3313	
12	58	18	12	2004	233,08		5961	9,9674	0,3378	9,9674	0,3378	
19	4	19	12	2004	233,16		7767	11,3776	0,3430	11,3776	0,3430	
9	24	20	12	2004	233,18		8627	11,9910	0,3442	11,9910	0,3442	
9	54	21	12	2004	233,21		10097	12,9724	0,3462	12,9724	0,3462	

Quadro A2.15 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.1.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 5,25%

Figura A2.15 Ensaio de absorção de água por capilaridade do provete IMC 5.1.

-												
	PROV	ete im	C 5.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	38	14	12	2004	226,13	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	41	14	12	2004	227,73	1,85	3	0,2236	0,1033	0,2236	0,1033	1,85
9	49	14	12	2004	228,91	3,35	11	0,4282	0,1796	0,4282	0,1796	3,35
9	57	14	12	2004	229,71	4,30	19	0,5627	0,2312	0,5627	0,2312	4,30
10	4	14	12	2004	230,28	5,15	26	0,6583	0,2680	0,6583	0,2680	5,15
10	18	14	12	2004	231,11	5,98	40	0,8165	0,3216	0,8165	0,3216	5,98
10	26	14	12	2004	231,25		48	0,8944	0,3307	0,8944	0,3307	
10	47	14	12	2004	231,29		69	1,0724	0,3333	1,0724	0,3333	
11	37	14	12	2004	231,29		119	1,4083	0,3333	1,4083	0,3333	
16	20	14	12	2004	231,36		402	2,5884	0,3378	2,5884	0,3378	
23	52	14	12	2004	231,37		854	3,7727	0,3384	3,7727	0,3384	
9	8	15	12	2004	231,43		1410	4,8477	0,3423	4,8477	0,3423	
18	40	15	12	2004	231,44		1982	5,7475	0,3430	5,7475	0,3430	
9	22	16	12	2004	231,52		2864	6,9089	0,3481	6,9089	0,3481	
19	2	16	12	2004	231,54		3444	7,5763	0,3494	7,5763	0,3494	
9	24	17	12	2004	231,62		4306	8,4715	0,3546	8,4715	0,3546	
12	58	18	12	2004	231,74		5960	9,9666	0,3623	9,9666	0,3623	
19	4	19	12	2004	231,83		7766	11,3769	0,3681	11,3769	0,3681	
9	25	20	12	2004	231,87		8627	11,9910	0,3707	11,9910	0,3707	
9	54	21	12	2004	231,90		10096	12,9718	0,3727	12,9718	0,3727	

Quadro A2.16 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.2.

SECÇÃO - 15,4830 cm² ALTURA - 5,98 cm POROSIDADE LIVRE - 5,65%

Figura A2.16 Ensaio de absorção de água por capilaridade do provete IMC 5.2.

	PROV	ETE IM	C 5.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	38	14	12	2004	225,94	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	41	14	12	2004	227,71	1,95	3	0,2236	0,1143	0,2236	0,1143	1,95
9	50	14	12	2004	228,92	3,45	12	0,4472	0,1925	0,4472	0,1925	3,45
9	58	14	12	2004	229,72	4,60	20	0,5774	0,2441	0,5774	0,2441	4,60
10	5	14	12	2004	230,31	5,30	27	0,6708	0,2822	0,6708	0,2822	5,30
10	18	14	12	2004	231,15	6,01	40	0,8165	0,3365	0,8165	0,3365	6,01
10	27	14	12	2004	231,23		49	0,9037	0,3417	0,9037	0,3417	
10	47	14	12	2004	231,25		69	1,0724	0,3430	1,0724	0,3430	
11	38	14	12	2004	231,27		120	1,4142	0,3442	1,4142	0,3442	
16	20	14	12	2004	231,31		402	2,5884	0,3468	2,5884	0,3468	
23	53	14	12	2004	231,34		855	3,7749	0,3488	3,7749	0,3488	
9	9	15	12	2004	231,37		1411	4,8494	0,3507	4,8494	0,3507	
18	41	15	12	2004	231,42		1983	5,7489	0,3539	5,7489	0,3539	
9	22	16	12	2004	231,50		2864	6,9089	0,3591	6,9089	0,3591	
19	2	16	12	2004	231,54		3444	7,5763	0,3617	7,5763	0,3617	
9	25	17	12	2004	231,61		4307	8,4725	0,3662	8,4725	0,3662	
12	58	18	12	2004	231,72		5960	9,9666	0,3733	9,9666	0,3733	
19	5	19	12	2004	231,84		7767	11,3776	0,3811	11,3776	0,3811	
9	25	20	12	2004	231,85		8627	11,9910	0,3817	11,9910	0,3817	
9	55	21	12	2004	231,88		10097	12,9724	0,3836	12,9724	0,3836	

Quadro A2.17 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.3.

Figura A2.17 Ensaio de absorção de água por capilaridade do provete IMC 5.3.

	PROV	ETE IM	C 5.4		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
9	38	14	12	2004	224,88	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
9	42	14	12	2004	226,84	2,15	4	0,2582	0,1266	0,2582	0,1266	2,15
9	50	14	12	2004	228,07	3,75	12	0,4472	0,2060	0,4472	0,2060	3,75
9	58	14	12	2004	228,97	4,85	20	0,5774	0,2642	0,5774	0,2642	4,85
10	5	14	12	2004	229,56	5,60	27	0,6708	0,3023	0,6708	0,3023	5,60
10	18	14	12	2004	230,18	5,98	40	0,8165	0,3423	0,8165	0,3423	5,98
10	27	14	12	2004	230,18		49	0,9037	0,3423	0,9037	0,3423	
10	48	14	12	2004	230,23		70	1,0801	0,3455	1,0801	0,3455	
11	38	14	12	2004	230,24		120	1,4142	0,3462	1,4142	0,3462	
16	21	14	12	2004	230,30		403	2,5917	0,3501	2,5917	0,3501	
23	53	14	12	2004	230,34		855	3,7749	0,3526	3,7749	0,3526	
9	9	15	12	2004	230,43		1411	4,8494	0,3585	4,8494	0,3585	
18	42	15	12	2004	230,47		1984	5,7504	0,3610	5,7504	0,3610	
9	23	16	12	2004	230,57		2865	6,9101	0,3675	6,9101	0,3675	
19	3	16	12	2004	230,60		3445	7,5774	0,3694	7,5774	0,3694	
9	25	17	12	2004	230,70		4307	8,4725	0,3759	8,4725	0,3759	
13	0	18	12	2004	230,78		5962	9,9683	0,3811	9,9683	0,3811	
19	5	19	12	2004	230,86		7767	11,3776	0,3862	11,3776	0,3862	
9	26	20	12	2004	230,88		8628	11,9917	0,3875	11,9917	0,3875	
9	55	21	12	2004	230,90		10097	12,9724	0,3888	12,9724	0,3888	

Quadro A2.18 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.4.

Figura A2.18 Ensaio de absorção de água por capilaridade do provete IMC 5.4.

-												
	PROV	ete im	C 6.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	19	14	12	2004	231,46	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	21	14	12	2004	232,18	1,00	2	0,1826	0,0465	0,1826	0,0465	1,00
10	28	14	12	2004	232,83	2,15	9	0,3873	0,0885	0,3873	0,0885	2,15
10	34	14	12	2004	233,20	2,75	15	0,5000	0,1124	0,5000	0,1124	2,75
10	48	14	12	2004	233,84	3,95	29	0,6952	0,1537	0,6952	0,1537	3,95
11	26	14	12	2004	235,08	6,02	67	1,0567	0,2338	1,0567	0,2338	6,02
11	43	14	12	2004	235,19		84	1,1832	0,2409	1,1832	0,2409	
12	29	14	12	2004	235,24		130	1,4720	0,2441	1,4720	0,2441	
14	4	14	12	2004	235,24		225	1,9365	0,2441	1,9365	0,2441	
16	22	14	12	2004	235,27		363	2,4597	0,2461	2,4597	0,2461	
23	54	14	12	2004	235,30		815	3,6856	0,2480	3,6856	0,2480	
9	10	15	12	2004	235,35		1371	4,7802	0,2512	4,7802	0,2512	
18	42	15	12	2004	235,35		1943	5,6906	0,2512	5,6906	0,2512	
9	23	16	12	2004	235,41		2824	6,8605	0,2551	6,8605	0,2551	
19	4	16	12	2004	235,42		3405	7,5333	0,2558	7,5333	0,2558	
9	26	17	12	2004	235,47		4267	8,4331	0,2590	8,4331	0,2590	
13	1	18	12	2004	235,51		5922	9,9348	0,2616	9,9348	0,2616	
19	6	19	12	2004	235,62		7727	11,3483	0,2687	11,3483	0,2687	
9	27	20	12	2004	235,62		8588	11,9638	0,2687	11,9638	0,2687	
9	56	21	12	2004	235,66		10057	12,9467	0,2713	12,9467	0,2713	

Quadro A2.19 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.1.

Figura A2.19 Ensaio de absorção de água por capilaridade do provete IMC 6.1.

	PROV	ete im	C 6.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	19	14	12	2004	229,68	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	22	14	12	2004	230,45	1,30	3	0,2236	0,0497	0,2236	0,0497	1,30
10	29	14	12	2004	231,10	2,45	10	0,4082	0,0917	0,4082	0,0917	2,45
10	34	14	12	2004	231,43	2,90	15	0,5000	0,1130	0,5000	0,1130	2,90
10	49	14	12	2004	232,04	3,95	30	0,7071	0,1524	0,7071	0,1524	3,95
11	27	14	12	2004	233,14	5,99	68	1,0646	0,2235	1,0646	0,2235	5,99
11	43	14	12	2004	233,27		84	1,1832	0,2319	1,1832	0,2319	
12	29	14	12	2004	233,32		130	1,4720	0,2351	1,4720	0,2351	
14	5	14	12	2004	233,34		226	1,9408	0,2364	1,9408	0,2364	
16	23	14	12	2004	233,35		364	2,4631	0,2370	2,4631	0,2370	
23	55	14	12	2004	233,38		816	3,6878	0,2390	3,6878	0,2390	
9	11	15	12	2004	233,43		1372	4,7819	0,2422	4,7819	0,2422	
18	43	15	12	2004	233,43		1944	5,6921	0,2422	5,6921	0,2422	
9	24	16	12	2004	233,50		2825	6,8617	0,2467	6,8617	0,2467	
19	4	16	12	2004	233,50		3405	7,5333	0,2467	7,5333	0,2467	
9	27	17	12	2004	233,54		4268	8,4341	0,2493	8,4341	0,2493	
13	1	18	12	2004	233,57		5922	9,9348	0,2512	9,9348	0,2512	
19	6	19	12	2004	233,68		7727	11,3483	0,2583	11,3483	0,2583	
9	27	20	12	2004	233,73		8588	11,9638	0,2616	11,9638	0,2616	
9	57	21	12	2004	233,75		10058	12,9473	0,2629	12,9473	0,2629	

Quadro A2.20 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.2.

Figura A2.20 Ensaio de absorção de água por capilaridade do provete IMC 6.2.

-												
	PROV	ete im	C 6.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	20	14	12	2004	233,97	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	22	14	12	2004	234,76	1,10	2	0,1826	0,0510	0,1826	0,0510	1,10
10	29	14	12	2004	235,31	2,05	9	0,3873	0,0865	0,3873	0,0865	2,05
10	35	14	12	2004	235,60	2,60	15	0,5000	0,1053	0,5000	0,1053	2,60
10	49	14	12	2004	236,15	3,80	29	0,6952	0,1408	0,6952	0,1408	3,80
11	27	14	12	2004	237,19	5,65	67	1,0567	0,2080	1,0567	0,2080	5,65
11	44	14	12	2004	237,49	6,10	84	1,1832	0,2273	1,1832	0,2273	6,10
12	30	14	12	2004	237,68		130	1,4720	0,2396	1,4720	0,2396	
14	6	14	12	2004	237,72		226	1,9408	0,2422	1,9408	0,2422	
16	24	14	12	2004	237,72		364	2,4631	0,2422	2,4631	0,2422	
23	55	14	12	2004	237,73		815	3,6856	0,2428	3,6856	0,2428	
9	11	15	12	2004	237,78		1371	4,7802	0,2461	4,7802	0,2461	
18	44	15	12	2004	237,79		1944	5,6921	0,2467	5,6921	0,2467	
9	25	16	12	2004	237,85		2825	6,8617	0,2506	6,8617	0,2506	
19	5	16	12	2004	237,85		3405	7,5333	0,2506	7,5333	0,2506	
9	27	17	12	2004	237,89		4267	8,4331	0,2532	8,4331	0,2532	
13	1	18	12	2004	237,94		5921	9,9339	0,2564	9,9339	0,2564	
19	7	19	12	2004	238,04		7727	11,3483	0,2629	11,3483	0,2629	
9	28	20	12	2004	238,07		8588	11,9638	0,2648	11,9638	0,2648	
9	57	21	12	2004	238,08		10057	12,9467	0,2655	12,9467	0,2655	

Quadro A2.21 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.3.

Figura A2.21 Ensaio de absorção de água por capilaridade do provete IMC 6.3.

	PROV	ete im	C 7.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	20	14	12	2004	230,68	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	23	14	12	2004	231,71	1,55	3	0,2236	0,0665	0,2236	0,0665	1,55
10	30	14	12	2004	232,46	2,60	10	0,4082	0,1150	0,4082	0,1150	2,60
10	35	14	12	2004	232,89	3,50	15	0,5000	0,1427	0,5000	0,1427	3,50
10	50	14	12	2004	233,60	4,70	30	0,7071	0,1886	0,7071	0,1886	4,70
11	28	14	12	2004	234,51	5,99	68	1,0646	0,2474	1,0646	0,2474	5,99
11	44	14	12	2004	234,51		84	1,1832	0,2474	1,1832	0,2474	
12	31	14	12	2004	234,54		131	1,4776	0,2493	1,4776	0,2493	
14	6	14	12	2004	234,56		226	1,9408	0,2506	1,9408	0,2506	
16	24	14	12	2004	234,58		364	2,4631	0,2519	2,4631	0,2519	
23	56	14	12	2004	234,58		816	3,6878	0,2519	3,6878	0,2519	
9	12	15	12	2004	234,63		1372	4,7819	0,2551	4,7819	0,2551	
18	44	15	12	2004	234,65		1944	5,6921	0,2564	5,6921	0,2564	
9	25	16	12	2004	234,71		2825	6,8617	0,2603	6,8617	0,2603	
19	6	16	12	2004	234,71		3406	7,5344	0,2603	7,5344	0,2603	
9	28	17	12	2004	234,74		4268	8,4341	0,2622	8,4341	0,2622	
13	2	18	12	2004	234,78		5922	9,9348	0,2648	9,9348	0,2648	
19	8	19	12	2004	234,87		7728	11,3490	0,2706	11,3490	0,2706	
9	28	20	12	2004	234,88		8588	11,9638	0,2713	11,9638	0,2713	
9	58	21	12	2004	234,90		10058	12,9473	0,2726	12,9473	0,2726	

Quadro A2.22 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.1.

Figura A2.22 Ensaio de absorção de água por capilaridade do provete IMC 7.1.

-													
		PROVE	ete im	C 7.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
	10	20	14	12	2004	231,84	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
	10	23	14	12	2004	232,94	1,65	3	0,2236	0,0710	0,2236	0,0710	1,65
	10	30	14	12	2004	233,62	2,80	10	0,4082	0,1150	0,4082	0,1150	2,80
	10	37	14	12	2004	234,04	3,65	17	0,5323	0,1421	0,5323	0,1421	3,65
	10	50	14	12	2004	234,71	4,85	30	0,7071	0,1854	0,7071	0,1854	4,85
	11	28	14	12	2004	235,49	6,01	68	1,0646	0,2357	1,0646	0,2357	6,01
	11	45	14	12	2004	235,49		85	1,1902	0,2357	1,1902	0,2357	
	12	31	14	12	2004	235,52		131	1,4776	0,2377	1,4776	0,2377	
	14	7	14	12	2004	235,54		227	1,9451	0,2390	1,9451	0,2390	
	16	25	14	12	2004	235,54		365	2,4664	0,2390	2,4664	0,2390	
	23	57	14	12	2004	235,56		817	3,6901	0,2403	3,6901	0,2403	
	9	12	15	12	2004	235,61		1372	4,7819	0,2435	4,7819	0,2435	
	18	45	15	12	2004	235,61		1945	5,6936	0,2435	5,6936	0,2435	
	9	26	16	12	2004	235,67		2826	6,8629	0,2474	6,8629	0,2474	
	19	6	16	12	2004	235,67		3406	7,5344	0,2474	7,5344	0,2474	
	9	28	17	12	2004	235,70		4268	8,4341	0,2493	8,4341	0,2493	
	13	2	18	12	2004	235,75		5922	9,9348	0,2525	9,9348	0,2525	
	19	8	19	12	2004	235,79		7728	11,3490	0,2551	11,3490	0,2551	
	9	29	20	12	2004	235,81		8589	11,9645	0,2564	11,9645	0,2564	
	9	58	21	12	2004	235,86		10058	12,9473	0,2596	12,9473	0,2596	

Quadro A2.23 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.2.

Figura A2.23 Ensaio de absorção de água por capilaridade do provete IMC 7.2.

	PROV	ete im	C 7.3		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	20	14	12	2004	231,65	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	24	14	12	2004	232,60	1,55	4	0,2582	0,0614	0,2582	0,0614	1,55
10	31	14	12	2004	233,20	2,60	11	0,4282	0,1001	0,4282	0,1001	2,60
10	38	14	12	2004	233,60	3,40	18	0,5477	0,1259	0,5477	0,1259	3,40
10	51	14	12	2004	234,17	4,60	31	0,7188	0,1628	0,7188	0,1628	4,60
11	29	14	12	2004	235,18	5,98	69	1,0724	0,2280	1,0724	0,2280	5,98
11	45	14	12	2004	235,18		85	1,1902	0,2280	1,1902	0,2280	
12	32	14	12	2004	235,22		132	1,4832	0,2306	1,4832	0,2306	
14	7	14	12	2004	235,23		227	1,9451	0,2312	1,9451	0,2312	
16	26	14	12	2004	235,24		366	2,4698	0,2319	2,4698	0,2319	
23	57	14	12	2004	235,25		817	3,6901	0,2325	3,6901	0,2325	
9	13	15	12	2004	235,29		1373	4,7837	0,2351	4,7837	0,2351	
18	45	15	12	2004	235,29		1945	5,6936	0,2351	5,6936	0,2351	
9	26	16	12	2004	235,34		2826	6,8629	0,2383	6,8629	0,2383	
19	7	16	12	2004	235,34		3407	7,5355	0,2383	7,5355	0,2383	
9	29	17	12	2004	235,37		4269	8,4350	0,2403	8,4350	0,2403	
13	2	18	12	2004	235,40		5922	9,9348	0,2422	9,9348	0,2422	
19	9	19	12	2004	235,42		7729	11,3497	0,2435	11,3497	0,2435	
9	29	20	12	2004	235,46		8589	11,9645	0,2461	11,9645	0,2461	
9	59	21	12	2004	235,50		10059	12,9480	0,2487	12,9480	0,2487	

Quadro A2.24 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.3.

Figura A2.24 Ensaio de absorção de água por capilaridade do provete IMC 7.3.

	PROVE	ETE IM	C 8.1		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	40	14	12	2004	225,43	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	42	14	12	2004	226,17	1,00	2	0,1826	0,0487	0,1826	0,0487	1,00
10	52	14	12	2004	227,08	2,70	12	0,4472	0,1085	0,4472	0,1085	2,70
11	29	14	12	2004	228,68	5,70	49	0,9037	0,2137	0,9037	0,2137	5,70
11	45	14	12	2004	229,12	5,99	65	1,0408	0,2427	1,0408	0,2427	5,99
12	32	14	12	2004	229,28		112	1,3663	0,2532	1,3663	0,2532	
14	8	14	12	2004	229,33		208	1,8619	0,2565	1,8619	0,2565	
16	27	14	12	2004	229,33		347	2,4049	0,2565	2,4049	0,2565	
23	58	14	12	2004	229,37		798	3,6469	0,2591	3,6469	0,2591	
9	14	15	12	2004	229,40		1354	4,7504	0,2611	4,7504	0,2611	
18	46	15	12	2004	229,40		1926	5,6657	0,2611	5,6657	0,2611	
9	27	16	12	2004	229,46		2807	6,8398	0,2650	6,8398	0,2650	
19	8	16	12	2004	229,48		3388	7,5144	0,2664	7,5144	0,2664	
9	30	17	12	2004	229,53		4250	8,4163	0,2696	8,4163	0,2696	
13	3	18	12	2004	229,60		5903	9,9188	0,2742	9,9188	0,2742	
19	10	19	12	2004	229,68		7710	11,3358	0,2795	11,3358	0,2795	
9	30	20	12	2004	229,72		8570	11,9513	0,2821	11,9513	0,2821	
10	0	21	12	2004	229,74		10040	12,9357	0,2835	12,9357	0,2835	

Quadro A2.25 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.1.

Figura A2.25 Ensaio de absorção de água por capilaridade do provete IMC 8.1.

	PROVE	ETE IM	C 8.2		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	40	14	12	2004	226,76	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	42	14	12	2004	227,60	1,25	2	0,1826	0,0552	0,1826	0,0552	1,25
10	53	14	12	2004	228,54	3,00	13	0,4655	0,1171	0,4655	0,1171	3,00
11	30	14	12	2004	230,15	5,96	50	0,9129	0,2230	0,9129	0,2230	5,96
11	46	14	12	2004	230,42	6,02	66	1,0488	0,2407	1,0488	0,2407	6,02
12	33	14	12	2004	230,48		113	1,3723	0,2447	1,3723	0,2447	
14	9	14	12	2004	230,50		209	1,8664	0,2460	1,8664	0,2460	
16	28	14	12	2004	230,51		348	2,4083	0,2466	2,4083	0,2466	
23	59	14	12	2004	230,55		799	3,6492	0,2493	3,6492	0,2493	
9	14	15	12	2004	230,59		1354	4,7504	0,2519	4,7504	0,2519	
18	47	15	12	2004	230,60		1927	5,6672	0,2525	5,6672	0,2525	
9	28	16	12	2004	230,64		2808	6,8411	0,2552	6,8411	0,2552	
19	8	16	12	2004	230,66		3388	7,5144	0,2565	7,5144	0,2565	
9	30	17	12	2004	230,71		4250	8,4163	0,2598	8,4163	0,2598	
13	3	18	12	2004	230,77		5903	9,9188	0,2637	9,9188	0,2637	
19	10	19	12	2004	230,88		7710	11,3358	0,2710	11,3358	0,2710	
9	31	20	12	2004	230,93		8571	11,9520	0,2742	11,9520	0,2742	
10	0	21	12	2004	230,95		10040	12,9357	0,2756	12,9357	0,2756	

 N_{48}

0 14 0,26

0,26

Quadro A2.26 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.2.

SECÇÃO - 15,2053 cm² ALTURA - 6,02 cm POROSIDADE LIVRE - 4,27%

Figura A2.26 Ensaio de absorção de água por capilaridade do provete IMC 8.2.

	PROVETE IMC 8.3				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	40	14	12	2004	228,03	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	43	14	12	2004	228,91	1,45	3	0,2236	0,0579	0,2236	0,0579	1,45
10	53	14	12	2004	229,82	3,05	13	0,4655	0,1177	0,4655	0,1177	3,05
11	30	14	12	2004	231,42	6,00	50	0,9129	0,2230	0,9129	0,2230	6,00
11	46	14	12	2004	231,61		66	1,0488	0,2354	1,0488	0,2354	
12	34	14	12	2004	231,65		114	1,3784	0,2381	1,3784	0,2381	
14	9	14	12	2004	231,70		209	1,8664	0,2414	1,8664	0,2414	
16	28	14	12	2004	231,70		348	2,4083	0,2414	2,4083	0,2414	
0	0	15	12	2004	231,70		800	3,6515	0,2414	3,6515	0,2414	
9	15	15	12	2004	231,77		1355	4,7522	0,2460	4,7522	0,2460	
18	48	15	12	2004	231,77		1928	5,6686	0,2460	5,6686	0,2460	
9	28	16	12	2004	231,81		2808	6,8411	0,2486	6,8411	0,2486	
19	9	16	12	2004	231,82		3389	7,5155	0,2493	7,5155	0,2493	
9	31	17	12	2004	231,87		4251	8,4172	0,2525	8,4172	0,2525	
13	4	18	12	2004	231,93		5904	9,9197	0,2565	9,9197	0,2565	
19	11	19	12	2004	232,00		7711	11,3365	0,2611	11,3365	0,2611	
9	31	20	12	2004	232,04		8571	11,9520	0,2637	11,9520	0,2637	
10	0	21	12	2004	232,07		10040	12,9357	0,2657	12,9357	0,2657	

Quadro A2.27 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.3.

SECÇÃO - 15,2053 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 4,12%

Figura A2.27 Ensaio de absorção de água por capilaridade do provete IMC 8.3.

	PROVETE IMC 9.1				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	41	14	12	2004	228,81	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	43	14	12	2004	229,72	1,25	2	0,1826	0,0598	0,1826	0,0598	1,25
10	54	14	12	2004	230,59	2,95	13	0,4655	0,1171	0,4655	0,1171	2,95
11	31	14	12	2004	232,17	5,50	50	0,9129	0,2210	0,9129	0,2210	5,50
11	47	14	12	2004	232,56	6,00	66	1,0488	0,2466	1,0488	0,2466	6,00
12	34	14	12	2004	232,68		113	1,3723	0,2545	1,3723	0,2545	
14	10	14	12	2004	232,71		209	1,8664	0,2565	1,8664	0,2565	
16	29	14	12	2004	232,72		348	2,4083	0,2571	2,4083	0,2571	
0	0	15	12	2004	232,73		799	3,6492	0,2578	3,6492	0,2578	
9	15	15	12	2004	232,77		1354	4,7504	0,2604	4,7504	0,2604	
18	48	15	12	2004	232,79		1927	5,6672	0,2618	5,6672	0,2618	
9	29	16	12	2004	232,85		2808	6,8411	0,2657	6,8411	0,2657	
19	10	16	12	2004	232,85		3389	7,5155	0,2657	7,5155	0,2657	
9	31	17	12	2004	232,88		4250	8,4163	0,2677	8,4163	0,2677	
13	4	18	12	2004	232,96		5903	9,9188	0,2729	9,9188	0,2729	
19	11	19	12	2004	233,04		7710	11,3358	0,2782	11,3358	0,2782	
9	32	20	12	2004	233,08		8571	11,9520	0,2808	11,9520	0,2808	
10	1	21	12	2004	233,10		10040	12,9357	0,2821	12,9357	0,2821	

Quadro A2.28 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.1.

SECÇÃO - 15,2053 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 4,37%

Figura A2.28 Ensaio de absorção de água por capilaridade do provete IMC 9.1.

	PROVETE IMC 9.2				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	41	14	12	2004	227,54	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	44	14	12	2004	228,53	1,60	3	0,2236	0,0651	0,2236	0,0651	1,60
10	54	14	12	2004	229,39	3,10	13	0,4655	0,1217	0,4655	0,1217	3,10
11	32	14	12	2004	231,01	5,98	51	0,9220	0,2282	0,9220	0,2282	5,98
11	47	14	12	2004	231,19		66	1,0488	0,2400	1,0488	0,2400	
12	35	14	12	2004	231,23		114	1,3784	0,2427	1,3784	0,2427	
14	10	14	12	2004	231,26		209	1,8664	0,2447	1,8664	0,2447	
16	30	14	12	2004	231,26		349	2,4118	0,2447	2,4118	0,2447	
0	1	15	12	2004	231,29		800	3,6515	0,2466	3,6515	0,2466	
9	16	15	12	2004	231,35		1355	4,7522	0,2506	4,7522	0,2506	
18	49	15	12	2004	231,36		1928	5,6686	0,2512	5,6686	0,2512	
9	29	16	12	2004	231,40		2808	6,8411	0,2539	6,8411	0,2539	
19	10	16	12	2004	231,40		3389	7,5155	0,2539	7,5155	0,2539	
9	32	17	12	2004	231,45		4251	8,4172	0,2571	8,4172	0,2571	
13	4	18	12	2004	231,54		5903	9,9188	0,2631	9,9188	0,2631	
19	12	19	12	2004	231,62		7711	11,3365	0,2683	11,3365	0,2683	
9	32	20	12	2004	231,66		8571	11,9520	0,2710	11,9520	0,2710	
10	2	21	12	2004	231,66		10041	12,9364	0,2710	12,9364	0,2710	

 N_{48}

0

14

0,25

0,25

Quadro A2.29 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.2.

Figura A2.29 Ensaio de absorção de água por capilaridade do provete IMC 9.2.

	PROVETE IMC 9.3				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
10	41	14	12	2004	227,87	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
10	44	14	12	2004	228,84	1,50	3	0,2236	0,0638	0,2236	0,0638	1,50
10	55	14	12	2004	229,70	3,00	14	0,4830	0,1204	0,4830	0,1204	3,00
11	32	14	12	2004	231,22	6,05	51	0,9220	0,2203	0,9220	0,2203	6,05
11	47	14	12	2004	231,43		66	1,0488	0,2341	1,0488	0,2341	
12	35	14	12	2004	231,47		114	1,3784	0,2368	1,3784	0,2368	
14	11	14	12	2004	231,50		210	1,8708	0,2387	1,8708	0,2387	
16	30	14	12	2004	231,50		349	2,4118	0,2387	2,4118	0,2387	
0	2	15	12	2004	231,53		801	3,6538	0,2407	3,6538	0,2407	
9	17	15	12	2004	231,58		1356	4,7539	0,2440	4,7539	0,2440	
18	50	15	12	2004	231,59		1929	5,6701	0,2447	5,6701	0,2447	
9	30	16	12	2004	231,65		2809	6,8423	0,2486	6,8423	0,2486	
19	11	16	12	2004	231,65		3390	7,5166	0,2486	7,5166	0,2486	
9	33	17	12	2004	231,70		4252	8,4182	0,2519	8,4182	0,2519	
13	5	18	12	2004	231,74		5904	9,9197	0,2545	9,9197	0,2545	
19	13	19	12	2004	231,85		7712	11,3373	0,2618	11,3373	0,2618	
9	33	20	12	2004	231,87		8572	11,9527	0,2631	11,9527	0,2631	
10	3	21	12	2004	231,90		10042	12,9370	0,2650	12,9370	0,2650	

Quadro A2.30 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.3.

Figura A2.30 Ensaio de absorção de água por capilaridade do provete IMC 9.3.

PROVETE 1.1												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
10	42	27	10	2004	228,90	0	0,00	0,0000				
11	5	27	10	2004	228,85	23	0,38	-0,0032				
11	56	27	10	2004	228,80	74	1,23	-0,0065				
13	42	27	10	2004	228,71	180	3,00	-0,0123				
14	29	27	10	2004	228,66	227	3,78	-0,0155				
16	28	27	10	2004	228,56	346	5,77	-0,0220				
18	48	27	10	2004	228,44	486	8,10	-0,0297				
0	47	28	10	2004	228,21	845	14,08	-0,0446				
7	44	28	10	2004	227,94	1262	21,03	-0,0620				
13	2	28	10	2004	227,69	1580	26,33	-0,0782				
19	34	28	10	2004	227,42	1972	32,87	-0,0956				
7	15	29	10	2004	227,00	2673	44,55	-0,1227				
13	3	29	10	2004	226,73	3021	50,35	-0,1402				
16	49	29	10	2004	226,54	3247	54,12	-0,1524				
23	26	29	10	2004	226,25	3644	60,73	-0,1712				
11	9	30	10	2004	225,79	4347	72,45	-0,2009				
20	0	30	10	2004	225,47	4878	81,30	-0,2215				
9	49	31	10	2004	225,07	5707	95,12	-0,2474				
16	20	31	10	2004	224,87	6098	101,63	-0,2603				
12	8	1	11	2004	224,61	7286	121,43	-0,2771				
10	23	3	11	2004	224,20	10061	167,68	-0,3036				
14	50	3	11	2004	224,17	10328	172,13	-0,3055				
18	31	3	11	2004	224,15	10549	175,82	-0,3068				
12	13	4	11	2004	224,02	11611	193,52	-0,3152				
19	54	4	11	2004	223,97	12072	201,20	-0,3184				
10	36	5	11	2004	223,88	12954	215,90	-0,3242				
18	29	5	11	2004	223,83	13427	223,78	-0,3275				
9	22	0	11	2004	223,74	14320	238,67	-0,3333				
10	23	7	11	2004	223,00	15281	254,08	-0,3384				
19	52	7	11	2004	223,30	10390	273,17	-0,3449				
20	37	0	11	2004	223,31	17103	200,30	-0,3401				
13		0	11	2004	223,43	18858	31/ 30	-0,3520				
0	53	10	11	2004	223,40	20111	314,30	-0,3552				
18	47	10	11	2004	223,32	20111	344.08	-0 3623				
9	21	10	11	2004	223,27	20043	358 65	-0 3649				
17	51	11	11	2004	223,23	22029	367,15	-0.3662				
12	15	12	11	2004	223,18	23133	385.55	-0.3694				
12	1	13	11	2004	223.15	24559	409.32	-0.3714				
20	8	14	11	2004	223,11	26486	441,43	-0,3740				
12	31	15	11	2004	223,10	27469	457.82	-0,3746				
12	42	16	11	2004	223,08	28920	482,00	-0,3759				
10	10	17	11	2004	223,08	30208	503,47	-0,3759				
10	17	18	11	2004	223,07	31655	527,58	-0,3765				
10	40	19	11	2004	223,07	33118	551,97	-0,3765				
12	40	20	11	2004	223,06	34678	577,97	-0,3772				
13	8	21	11	2004	223,06	36146	602,43	-0,3772				
11	18	22	11	2004	223,06	37476	624,60	-0,3772				
11	7	23	11	2004	223.06	38905	648.42	-0.3772				

Quadro A2.31 Resultados do ensaio de evaporação do provete IMC 1.1.

Figura A2.31 Ensaio de evaporação do provete IMC 1.1.

PROVETE IMC 1.2												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
10	43	27	10	2004	228,90	0	0,00	0,00				
11	5	27	10	2004	228,85	22	0,37	-0,05				
11	57	27	10	2004	228,82	74	1,23	-0,08				
13	42	27	10	2004	228,76	179	2,98	-0,14				
14	29	27	10	2004	228,69	226	3,77	-0,21				
16	29	27	10	2004	228,60	346	5,77	-0,30				
18	48	27	10	2004	228,52	485	8,08	-0,38				
0	48	28	10	2004	228,33	845	14,08	-0,57				
7	45	28	10	2004	228,10	1262	21,03	-0,80				
13	3	28	10	2004	227,94	1580	26,33	-0,96				
19	35	28	10	2004	227,74	1972	32,87	-1,16				
7	16	29	10	2004	227,39	2673	44,55	-1,51				
13	3	29	10	2004	227,16	3020	50,33	-1,74				
16	50	29	10	2004	227,00	3247	54,12	-1,90				
23	27	29	10	2004	226,77	3644	60,73	-2,13				
11	10	30	10	2004	226,36	4347	72,45	-2,54				
20	1	30	10	2004	226,07	4878	81,30	-2,83				
9	49	31	10	2004	225,71	5706	95,10	-3,19				
16	20	31	10	2004	225,50	6097	101,62	-3,40				
12	8	1	11	2004	224,98	7285	121,42	-3,92				
20	8	1	11	2004	224,72	7765	129,42	-4,18				
9	24	2	11	2004	224,49	8561	142,68	-4,41				
13	28	2	11	2004	224,45	8805	146,75	-4,45				
22	5	2	11	2004	224,34	9322	155,37	-4,56				
10	24	3	11	2004	224,21	10061	167,68	-4,69				
14	51	3	11	2004	224,18	10328	172,13	-4,72				
18	31	3	11	2004	224,14	10548	175,80	-4,76				
12	13	4	11	2004	224,01	11610	193,50	-4,89				
19	55	4	11	2004	223,96	12072	201,20	-4,94				
10	37	5	11	2004	223,87	12954	215,90	-5,03				
18	30	5	11	2004	223,82	13427	223,78	-5,08				
9	23	6	11	2004	223,74	14320	238,67	-5,16				
1	23	7	11	2004	223,67	15280	254,67	-5,23				
19	52	7	11	2004	223,58	16389	273,15	-5,32				
9	6	8	11	2004	223,53	17183	286,38	-5,37				
20	37	8	11	2004	223,49	17874	297,90	-5,41				
13	4	9	11	2004	223,44	18861	314,35	-5,46				
9	54	10	11	2004	223,35	20111	335,18	-5,55				
18	47	10	11	2004	223,33	20644	344,07	-5,57				
9	22	11	11	2004	223,29	21519	358,65	-5,61				
17	52	11	11	2004	223,26	22029	367,15	-5,64				
12	16	12	11	2004	223,22	23133	385,55	-5,68				
12	1	13	11	2004	223,16	24558	409,30	-5,74				
20	8	14	11	2004	223,08	26485	441,42	-5,82				
12	31	15	11	2004	223,04	27468	457,80	-5,86				
12	42	16	11	2004	223,00	28919	481,98	-5,90				
10	10	17	11	2004	222,96	30207	503,45	-5,94				
10	17	18	11	2004	222,93	31654	527,57	-5,97				
10	40	19	11	2004	222,91	33117	551,95	-5,99				
12	40	20	11	2004	222,89	34677	577,95	-6,01				
13	8	21	11	2004	222,86	36145	602,42	-6,04				
11	18	22	11	2004	222,85	37475	624,58	-6,05				
11	7	23	11	2004	222.84	38904	648 40	-6.06				

Quadro A2.32 Resultados do ensaio de evaporação do provete IMC 1.2.

Figura A2.32 Ensaio de evaporação do provete IMC 1.2.

PROVETE IMC 1.3												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
10	43	27	10	2004	226,82	0	0,00	0,0000				
11	6	27	10	2004	226,80	23	0,38	-0,0013				
11	57	27	10	2004	226,75	74	1,23	-0,0045				
13	42	27	10	2004	226,69	179	2,98	-0,0084				
14	29	27	10	2004	226,64	226	3,77	-0,0116				
16	29	27	10	2004	226,58	346	5,77	-0,0155				
18	49	27	10	2004	226,51	486	8,10	-0,0200				
0	48	28	10	2004	226,29	845	14,08	-0,0342				
7	45	28	10	2004	226,05	1262	21,03	-0,0497				
13	4	28	10	2004	225,92	1581	26,35	-0,0581				
19	36	28	10	2004	225,71	1973	32,88	-0,0717				
7	16	29	10	2004	225,36	2673	44,55	-0,0943				
13	4	29	10	2004	225,17	3021	50,35	-0,1066				
16	50	29	10	2004	225,06	3247	54,12	-0,1137				
23	27	29	10	2004	224,87	3644	60,73	-0,1259				
11	10	30	10	2004	224,49	4347	72,45	-0,1505				
20	1	30	10	2004	224,24	4878	81,30	-0,1666				
9	50	31	10	2004	223,80	5707	95,12	-0,1951				
16	20	31	10	2004	223,63	6097	101,62	-0,2060				
12	8	1	11	2004	222,97	7285	121,42	-0,2487				
20	8	1	11	2004	222,76	7765	129,42	-0,2622				
9	24	2	11	2004	222,42	8561	142,68	-0,2842				
13	28	2	11	2004	222,31	8805	146,75	-0,2913				
22	5	2	11	2004	222,15	9322	155,37	-0,3016				
10	24	3	11	2004	221,98	10061	167,68	-0,3126				
14	51	3	11	2004	221,93	10328	172,13	-0,3158				
18	32	3	11	2004	221,89	10549	175,82	-0,3184				
12	14	4	11	2004	221,72	11611	193,52	-0,3294				
19	55	4	11	2004	221,66	12072	201,20	-0,3333				
10	38	5	11	2004	221,55	12955	215,92	-0,3404				
18	30	5	11	2004	221,48	13427	223,78	-0,3449				
9	23	6	11	2004	221,38	14320	238,67	-0,3514				
1	23	7	11	2004	221,30	15280	254,67	-0,3565				
19	53	7	11	2004	221,21	16390	273,17	-0,3623				
9	6	8	11	2004	221,14	17183	286,38	-0,3669				
20	38	8	11	2004	221,08	17875	297,92	-0,3707				
13	4	9	11	2004	221,01	18861	314,35	-0,3753				
9	54	10	11	2004	220,93	20111	335,18	-0,3804				
18	48	10	11	2004	220,89	20645	344,08	-0,3830				
9	22	11	11	2004	220,85	21519	358,65	-0,3856				
17	53	11	11	2004	220,82	22030	367,17	-0,3875				
12	16	12	11	2004	220,75	23133	385,55	-0,3920				
12	1	13	11	2004	220,69	24558	409,30	-0,3959				
20	8	14	11	2004	220,61	26485	441,42	-0,4011				
12	31	15	11	2004	220,57	27468	457,80	-0,4037				
12	42	16	11	2004	220,53	28919	481,98	-0,4063				
10	10	17	11	2004	220,49	30207	503,45	-0,4088				
10	17	18	11	2004	220,46	31654	527,57	-0,4108				
10	40	19	11	2004	220,42	33117	551,95	-0,4134				
12	40	20	11	2004	220,39	34677	577,95	-0,4153				
11	18	22	11	2004	220,37	37475	624,58	-0,4166				
11	7	23	11	2004	220,36	38904	648,40	-0.4172				

Quadro A2.33 Resultados do ensaio de evaporação do provete IMC 1.3.

Figura A2.33 Ensaio de evaporação do provete IMC 1.3.

PROVETE IMC 1.4												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
10	45	27	10	2004	207,07	0	0,00	0,00				
11	6	27	10	2004	207,04	21	0,35	-0,03				
11	58	27	10	2004	207,00	73	1,22	-0,07				
13	43	27	10	2004	206,90	178	2,97	-0,17				
14	30	27	10	2004	206,89	225	3,75	-0,18				
16	29	27	10	2004	206,82	344	5,73	-0,25				
18	49	27	10	2004	206,73	484	8,07	-0,34				
0	49	28	10	2004	206,56	844	14,07	-0,51				
7	46	28	10	2004	206,38	1261	21,02	-0,69				
13	4	28	10	2004	206,22	1579	26,32	-0,85				
19	36	28	10	2004	206,04	1971	32,85	-1,03				
7	17	29	10	2004	205,72	2672	44,53	-1,35				
13	4	29	10	2004	205,54	3019	50,32	-1,53				
16	50	29	10	2004	205,40	3245	54,08	-1,67				
23	28	29	10	2004	205,21	3643	60,72	-1,86				
20	1	30	10	2004	204,61	4876	81,27	-2,46				
9	50	31	10	2004	204,22	5705	95,08	-2,85				
16	21	31	10	2004	204,04	6096	101,60	-3,03				
12	8	1	11	2004	203,48	7283	121,38	-3,59				
20	8	1	11	2004	203,26	7763	129,38	-3,81				
9	24	2	11	2004	202,88	8559	142,65	-4,19				
13	28	2	11	2004	202,74	8803	146,72	-4,33				
22	5	2	11	2004	202,47	9320	155,33	-4,60				
10	25	3	11	2004	202,20	10060	167,67	-4,87				
14	52	3	11	2004	202,11	10327	172,12	-4,96				
18	32	3	11	2004	202,05	10547	175,78	-5,02				
12	14	4	11	2004	201,84	11609	193,48	-5,23				
19	56	4	11	2004	201,76	12071	201,18	-5,31				
10	38	5	11	2004	201,63	12953	215,88	-5,44				
18	31	5	11	2004	201,55	13426	223,77	-5,52				
9	23	6	11	2004	201,44	14318	238,63	-5,63				
1	24	7	11	2004	201,34	15279	254,65	-5,73				
19	53	7	11	2004	201,24	16388	273,13	-5,83				
9	6	8	11	2004	201,17	17181	286,35	-5,90				
20	39	8	11	2004	201,09	17874	297,90	-5,98				
13	5	9	11	2004	201,01	18860	314,33	-6,06				
9	55	10	11	2004	200,92	20110	335,17	-6,15				
18	49	10	11	2004	200,89	20644	344,07	-6,18				
9	23	11	11	2004	200,82	21518	358,63	-6,25				
17	54	11	11	2004	200,78	22029	367,15	-6,29				
12	17	12	11	2004	200,72	23132	385,53	-6,35				
12	1	13	11	2004	200,65	24556	409,27	-6,42				
20	8	14	11	2004	200,57	26483	441,38	-6,50				
12	31	15	11	2004	200,54	27466	457,77	-6,53				
12	42	16	11	2004	200,49	28917	481,95	-6,58				
10	10	17	11	2004	200,46	30205	503,42	-6,61				
10	17	18	11	2004	200,44	31652	527,53	-6,63				
10	40	19	11	2004	200,41	33115	551,92	-6,66				
12	40	20	11	2004	200,41	34675	577,92	-6,66				
13	8	21	11	2004	200,41	36143	602,38	-6,66				
11	18	22	11	2004	200,40	37473	624,55	-6,67				
11	7	23	11	2004	200,40	38902	648.37	-6.67				

Quadro A2.34 Resultados do ensaio de evaporação do provete IMC 1.4.

Figura A2.34 Ensaio de evaporação do provete IMC 1.4.
PROVETE IMC 2.1									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
10	47	27	10	2004	224,35	0	0,00	0,00	
11	7	27	10	2004	224,32	20	0,33	-0,03	
11	58	27	10	2004	224,26	71	1,18	-0,09	
13	43	27	10	2004	224,21	176	2,93	-0,14	
14	30	27	10	2004	224,18	223	3,72	-0,17	
16	30	27	10	2004	224,12	343	5,72	-0,23	
18	50	27	10	2004	224,04	483	8,05	-0,31	
0	49	28	10	2004	223,88	842	14,03	-0,47	
7	47	28	10	2004	223,69	1260	21,00	-0,66	
13	5	28	10	2004	223,57	1578	26,30	-0,78	
19	37	28	10	2004	223,40	1970	32,83	-0,95	
7	18	29	10	2004	223,11	2671	44,52	-1,24	
13	5	29	10	2004	222,95	3018	50,30	-1,40	
16	50	29	10	2004	222,81	3243	54,05	-1,54	
23	28	29	10	2004	222,63	3641	60,68	-1,72	
11	11	30	10	2004	222,35	4344	72,40	-2,00	
20	2	30	10	2004	222,12	4875	81,25	-2,23	
9	50	31	10	2004	221,75	5703	95,05	-2,60	
16	21	31	10	2004	221,59	6094	101,57	-2,76	
12	8	1	11	2004	221,05	7281	121,35	-3,30	
20	8	1	11	2004	220,84	7761	129,35	-3,51	
9	24	2	11	2004	220,46	8557	142,62	-3,89	
13	28	2	11	2004	220,33	8801	146,68	-4,02	
22	6	2	11	2004	220,07	9319	155,32	-4,28	
10	25	3	11	2004	219,71	10058	167,63	-4,64	
14	52	3	11	2004	219,55	10325	172,08	-4,80	
18	33	3	11	2004	219,41	10546	175,77	-4,94	
12	15	4	11	2004	218,93	11608	193,47	-5,42	
19	56	4	11	2004	218,78	12069	201,15	-5,57	
10	39	5	11	2004	218,55	12952	215,87	-5,80	
18	32	5	11	2004	218,43	13425	223,75	-5,92	
9	24	6	11	2004	218,27	14317	238,62	-6,08	
1	24	7	11	2004	218,11	15277	254,62	-6,24	
19	53	7	11	2004	217,94	16386	273,10	-6,41	
9	7	8	11	2004	217,85	17180	286,33	-6,50	
20	39	8	11	2004	217,75	17872	297,87	-6,60	
13	6	9	11	2004	217,63	18859	314,32	-6,72	
9	55	10	11	2004	217,52	20108	335,13	-6,83	
18	49	10	11	2004	217,47	20642	344,03	-6,88	
9	24	11	11	2004	217,40	21517	358,62	-6,95	
17	55	11	11	2004	217,34	22028	367,13	-7,01	
12	18	12	11	2004	217,27	23131	385,52	-7,08	
12	1	13	11	2004	217,16	24554	409,23	-7,19	
20	8	14	11	2004	217,06	26481	441,35	-7,29	
12	31	15	11	2004	217,02	27464	457,73	-7,33	
12	42	16	11	2004	216,95	28915	481,92	-7,40	
10	10	17	11	2004	216,90	30203	503,38	-7,45	
10	17	18	11	2004	216,85	31650	527,50	-7,50	
10	40	19	11	2004	216,82	33113	551,88	-7,53	
12	40	20	11	2004	216,80	34673	577,88	-7,55	
13	8	21	11	2004	216,78	36141	602,35	-7,57	
11	18	22	11	2004	216,78	37471	624,52	-7,57	
11	7	23	11	2004	216,77	38900	648,33	-7,58	

Quadro A2.35 Resultados do ensaio de evaporação do provete IMC 2.1.

Figura A2.35 Ensaio de evaporação do provete IMC 2.1.

PROVETE IMC 2.2									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
10	49	27	10	2004	221,92	0	0,00	0,00	
11	7	27	10	2004	221,91	18	0,30	-0,01	
11	58	27	10	2004	221,86	69	1,15	-0,06	
13	43	27	10	2004	221,78	174	2,90	-0,14	
14	30	27	10	2004	221,75	221	3,68	-0,17	
16	30	27	10	2004	221,68	341	5,68	-0,24	
18	51	27	10	2004	221,60	482	8,03	-0,32	
0	50	28	10	2004	221,38	841	14,02	-0,54	
7	47	28	10	2004	221,14	1258	20,97	-0,78	
13	5	28	10	2004	220,98	1576	26,27	-0,94	
19	37	28	10	2004	220,74	1968	32,80	-1,18	
7	18	29	10	2004	220,34	2669	44,48	-1,58	
13	5	29	10	2004	220,20	3016	50,27	-1,72	
16	51	29	10	2004	220,09	3242	54,03	-1,83	
23	28	29	10	2004	219,86	3639	60,65	-2,06	
11	12	30	10	2004	219,51	4343	72,38	-2,41	
20	2	30	10	2004	219,22	4873	81,22	-2,70	
9	51	31	10	2004	218,73	5702	95,03	-3,19	
16	21	31	10	2004	218,55	6092	101,53	-3,37	
12	8	1	11	2004	217,85	7279	121,32	-4,07	
20	8	1	11	2004	217,57	7759	129,32	-4,35	
9	24	2	11	2004	217,16	8555	142,58	-4,76	
13	28	2	11	2004	217,03	8799	146,65	-4,89	
22	6	2	11	2004	216,76	9317	155,28	-5,16	
10	26	3	11	2004	216,32	10057	167,62	-5,60	
14	53	3	11	2004	216,18	10324	172,07	-5,74	
18	33	3	11	2004	216,05	10544	175,73	-5,87	
12	16	4	11	2004	215,58	11607	193,45	-6,34	
19	56	4	11	2004	215,46	12067	201,12	-6,46	
10	40	5	11	2004	215,26	12951	215,85	-6,66	
18	32	5	11	2004	215,14	13423	223,72	-6,78	
9	25	6	11	2004	214,99	14316	238,60	-6,93	
1	24	7	11	2004	214,84	15275	254,58	-7,08	
19	54	7	11	2004	214,67	16385	273,08	-7,25	
9	7	8	11	2004	214,60	17178	286,30	-7,32	
20	40	8	11	2004	214,52	17871	297,85	-7,40	
13	6	9	11	2004	214,41	18857	314,28	-7,51	
9	56	10	11	2004	214,30	20107	335,12	-7,62	
18	50	10	11	2004	214,26	20641	344,02	-7,66	
9	24	11	11	2004	214,18	21515	358,58	-7,74	
17	55	11	11	2004	214,15	22026	367,10	-7,77	
12	18	12	11	2004	214,07	23129	385,48	-7,85	
12	1	13	11	2004	213,99	24552	409,20	-7,93	
20	8	14	11	2004	213,87	26479	441,32	-8,05	
12	31	15	11	2004	213,83	27462	457,70	-8,09	
12	42	16	11	2004	213,77	28913	481,88	-8,15	
10	10	17	11	2004	213,71	30201	503,35	-8,21	
10	17	18	11	2004	213,68	31648	527,47	-8,24	
10	40	19	11	2004	213,65	33111	551,85	-8,27	
12	40	20	11	2004	213,62	34671	577,85	-8,30	
13	8	21	11	2004	213,62	36139	602,32	-8,30	
11	18	22	11	2004	213,60	37469	624,48	-8,32	
11	7	23	11	2004	213,60	38898	648,30	-8,32	

Quadro A2.36 Resultados do ensaio de evaporação do provete IMC 2.2.

Figura A2.36 Ensaio de evaporação do provete IMC 2.2.

PROVETE IMC 2.3									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
10	53	27	10	2004	222,37	0	0,00	0,00	
11	20	27	10	2004	222,32	27	0,45	-0,05	
11	59	27	10	2004	222,28	66	1,10	-0,09	
13	44	27	10	2004	222,17	171	2,85	-0,20	
14	31	27	10	2004	222,13	218	3,63	-0,24	
16	31	27	10	2004	222,02	338	5,63	-0,35	
18	52	27	10	2004	221,90	479	7,98	-0,47	
0	50	28	10	2004	221,62	837	13,95	-0,75	
7	49	28	10	2004	221,37	1256	20,93	-1,00	
13	6	28	10	2004	221,13	1573	26,22	-1,24	
19	39	28	10	2004	220,83	1966	32,77	-1,54	
7	19	29	10	2004	220,28	2666	44,43	-2,09	
13	6	29	10	2004	220,01	3013	50,22	-2,36	
16	51	29	10	2004	219,83	3238	53,97	-2,54	
23	29	29	10	2004	219,49	3636	60,60	-2,88	
11	13	30	10	2004	218,91	4340	72,33	-3,46	
20	2	30	10	2004	218,51	4869	81,15	-3,86	
9	52	31	10	2004	217,89	5699	94,98	-4,48	
16	22	31	10	2004	217,59	6089	101,48	-4,78	
12	10	1	11	2004	216,77	7277	121,28	-5,60	
20	10	1	11	2004	216,47	7757	129,28	-5,90	
9	28	2	11	2004	216,04	8555	142,58	-6,33	
13	28	2	11	2004	215,95	8795	146,58	-6,42	
22	6	2	11	2004	215,80	9313	155,22	-6,57	
10	27	3	11	2004	215,61	10054	167,57	-6,76	
14	53	3	11	2004	215,55	10320	172,00	-6,82	
18	34	3	11	2004	215,49	10541	175,68	-6,88	
12	17	4	11	2004	215,32	11604	193,40	-7,05	
19	57	4	11	2004	215,24	12064	201,07	-7,13	
10	41	5	11	2004	215,11	12948	215,80	-7,26	
18	33	5	11	2004	215,05	13420	223,67	-1,32	
9	27	0	11	2004	214,94	14314	238,57	-7,43	
10	20	7	11	2004	214,84	16272	254,53	-7,53	
19	54	/	11	2004	214,71	10301	273,02	-7,00 CF F	
9	0	0	11	2004	214,00	17173	200,23	-1,12	
13	40	0	11	2004	214,30	1/00/	297,70	-7,19	
13	56	, 10	11	2004	214,50	20103	335.05	-7,07	
18	50	10	11	2004	214,42	20103	343.05	_7 00	
0	25	10	11	2004	214,30	20037	358 53	-8.05	
17	56	11	11	2004	214,32	21312	367.05	-0,03	
17	19	12	11	2004	214,27	22023	385 43	-8,00	
12	4	12	11	2004	211,20	20120	409.18	-8 21	
20	11	13	11	2004	214,08	26478	441 30	-8.29	
12	33	15	11	2004	214.03	27460	457.67	-8.34	
12	45	16	11	2004	213.99	28912	481.87	-8.38	
10	12	17	11	2004	213.94	30199	503.32	-8,43	
10	19	18	11	2004	213.92	31646	527,43	-8,45	
10	42	19	11	2004	213,89	33109	551,82	-8,48	
12	43	20	11	2004	213,88	34670	577,83	-8,49	
13	10	21	11	2004	213,84	36137	602,28	-8,53	
11	20	22	11	2004	213,84	37467	624,45	-8,53	
11	9	23	11	2004	213 84	38896	648 27	-8.53	

Quadro A2.37 Resultados do ensaio de evaporação do provete IMC 2.3.

Figura A2.37 Ensaio de evaporação do provete IMC 2.3.

PROVETE IMC 2.4									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
10	55	27	10	2004	220,10	0	0,00	0,00	
11	20	27	10	2004	220,06	25	0,42	-0,04	
11	59	27	10	2004	220,01	64	1,07	-0,09	
13	44	27	10	2004	219,93	169	2,82	-0,17	
14	31	27	10	2004	219,89	216	3,60	-0,21	
16	31	27	10	2004	219,80	336	5,60	-0,30	
18	52	27	10	2004	219,71	477	7,95	-0,39	
0	51	28	10	2004	219,49	836	13,93	-0,61	
7	49	28	10	2004	219,27	1254	20,90	-0,83	
13	7	28	10	2004	219,06	1572	26,20	-1,04	
19	39	28	10	2004	218,80	1964	32,73	-1,30	
7	20	29	10	2004	218,39	2665	44,42	-1,71	
13	7	29	10	2004	218,19	3012	50,20	-1,91	
16	51	29	10	2004	218,01	3236	53,93	-2,09	
23	29	29	10	2004	217,78	3634	60,57	-2,32	
11	13	30	10	2004	217,35	4338	72,30	-2,75	
20	3	30	10	2004	217,03	4868	81,13	-3,07	
9	52	31	10	2004	216,53	5697	94,95	-3,57	
16	22	31	10	2004	216,26	6087	101,45	-3,84	
12	8	1	11	2004	215,53	7273	121,22	-4,57	
20	8	1	11	2004	215,22	7753	129,22	-4,88	
9	28	2	11	2004	214,67	8553	142,55	-5,43	
13	31	2	11	2004	214,47	8796	146,60	-5,63	
22	7	2	11	2004	214,10	9312	155,20	-6,00	
10	27	3	11	2004	213,67	10052	167,53	-6,43	
14	54	3	11	2004	213,55	10319	171,98	-6,55	
18	35	3	11	2004	213,47	10540	175,67	-6,63	
12	18	4	11	2004	213,17	11603	193,38	-6,93	
19	57	4	11	2004	213,07	12062	201,03	-7,03	
10	41	5	11	2004	212,88	12946	215,77	-7,22	
18	33	5	11	2004	212,78	13418	223,63	-7,32	
9	27	6	11	2004	212,64	14312	238,53	-7,46	
1	25	7	11	2004	212,48	15270	254,50	-7,62	
19	54	7	11	2004	212,32	16379	272,98	-7,78	
9	9	8	11	2004	212,23	17174	286,23	-7,87	
20	41	8	11	2004	212,16	17866	297,77	-7,94	
13	8	9	11	2004	212,06	18853	314,22	-8,04	
9	57	10	11	2004	211,94	20102	335,03	-8,16	
18	51	10	11	2004	211,89	20636	343,93	-8,21	
9	25	11	11	2004	211,83	21510	358,50	-8,27	
17	57	11	11	2004	211,80	22022	367,03	-8,30	
12	20	12	11	2004	211,73	23125	385,42	-8,37	
12	4	13	11	2004	211,66	24549	409,15	-8,44	
20	11	14	11	2004	211,59	26476	441,27	-8,51	
12	33	15	11	2004	211,56	27458	457,63	-8,54	
12	45	16	11	2004	211,53	28910	481,83	-8,57	
10	12	17	11	2004	211,51	30197	503,28	-8,59	
10	19	18	11	2004	211,50	31644	527,40	-8,60	
10	42	19	11	2004	211,50	33107	551,78	-8,60	
12	43	20	11	2004	211,48	34668	577,80	-8,62	
13	10	21	11	2004	211,48	36135	602,25	-8,62	
11	20	22	11	2004	211,48	37465	624,42	-8,62	
11	9	23	11	2004	211,48	38894	648,23	-8,62	

Quadro A2.38 Resultados do ensaio de evaporação do provete IMC 2.4.

Figura A2.38 Ensaio de evaporação do provete IMC 2.4.

PROVETE IMC 3.1									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
10	59	27	10	2004	233,18	0	0,00	0,00	
11	21	27	10	2004	233,14	22	0,37	-0,04	
11	59	27	10	2004	233,08	60	1,00	-0,10	
13	45	27	10	2004	233,00	166	2,77	-0,18	
14	32	27	10	2004	232,95	213	3,55	-0,23	
16	32	27	10	2004	232,86	333	5,55	-0,32	
18	53	27	10	2004	232,76	474	7,90	-0,42	
0	52	28	10	2004	232,53	833	13,88	-0,65	
7	50	28	10	2004	232,27	1251	20,85	-0,91	
13	8	28	10	2004	232,09	1569	26,15	-1,09	
19	40	28	10	2004	231,87	1961	32,68	-1,31	
7	21	29	10	2004	231,52	2662	44,37	-1,66	
13	8	29	10	2004	231,28	3009	50,15	-1,90	
16	52	29	10	2004	231,14	3233	53,88	-2,04	
23	29	29	10	2004	230,90	3630	60,50	-2,28	
11	14	30	10	2004	230,58	4335	72,25	-2,60	
20	3	30	10	2004	230,39	4864	81,07	-2,79	
9	53	31	10	2004	230,19	5694	94,90	-2,99	
16	23	31	10	2004	230,16	6084	101,40	-3,02	
12	10	1	11	2004	230,03	7271	121,18	-3,15	
20	10	1	11	2004	230,00	7751	129,18	-3,18	
9	28	2	11	2004	229,93	8549	142,48	-3,25	
13	31	2	11	2004	229,90	8792	146,53	-3,28	
22	7	2	11	2004	229,87	9308	155,13	-3,31	
10	28	3	11	2004	229,81	10049	167,48	-3,37	
14	54	3	11	2004	229,78	10315	171,92	-3,40	
18	35	3	11	2004	229,76	10536	175,60	-3,42	
12	18	4	11	2004	229,69	11599	193,32	-3,49	
19	57	4	11	2004	229,67	12058	200,97	-3,51	
10	42	5	11	2004	229,62	12943	215,72	-3,56	
18	34	5	11	2004	229,59	13415	223,58	-3,59	
9	28	6	11	2004	229,54	14309	238,48	-3,64	
1	25	7	11	2004	229,50	15266	254,43	-3,68	
19	55	7	11	2004	229,45	16376	272,93	-3,73	
9	9	8	11	2004	229,41	17170	286,17	-3,77	
20	41	8	11	2004	229,38	17862	297,70	-3,80	
13	8	9	11	2004	229,35	18849	314,15	-3,83	
9	58	10	11	2004	229,29	20099	334,98	-3,89	
18	51	10	11	2004	229,28	20632	343,87	-3,90	
9	26	11	11	2004	229,25	21507	358,45	-3,93	
17	57	11	11	2004	229,23	22018	366,97	-3,95	
12	20	12	11	2004	229,19	23121	385,35	-3,99	
12	4	13	11	2004	229,15	24545	409,08	-4,03	
20	11	14	11	2004	229,11	26472	441,20	-4,07	
12	33	15	11	2004	229,07	27454	457,57	-4,11	
12	45	16	. 11	2004	229,04	28906	481,77	-4,14	
10	12	17	11	2004	229,01	30193	503,22	-4,17	
10	19	18	11	2004	228,98	31640	527,33	-4,20	
10	42	19	11	2004	228,95	33103	551,72	-4,23	
12	43	20	11	2004	228,91	34664	577,73	-4,27	
13	10	21	11	2004	228,89	36131	602,18	-4,29	
11	20	22	11	2004	228,86	3/461	624,35	-4,32	
11	9	23	11	2004	228,85	38890	648,17	-4,33	

Quadro A2.39 Resultados do ensaio de evaporação do provete IMC 3.1.

Figura A2.39 Ensaio de evaporação do provete IMC 3.1.

PROVETE IMC 3.2									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	0	27	10	2004	233,71	0	0,00	0,00	
11	21	27	10	2004	233,68	21	0,35	-0,03	
12	0	27	10	2004	233,65	60	1,00	-0,06	
13	45	27	10	2004	233,56	165	2,75	-0,15	
14	32	27	10	2004	233,53	212	3,53	-0,18	
16	32	27	10	2004	233,48	332	5,53	-0,23	
18	54	27	10	2004	233,39	474	7,90	-0,32	
0	53	28	10	2004	233,19	833	13,88	-0,52	
7	51	28	10	2004	232,98	1251	20,85	-0,73	
13	8	28	10	2004	232,82	1568	26,13	-0,89	
19	41	28	10	2004	232,59	1961	32,68	-1,12	
7	21	29	10	2004	232,19	2661	44,35	-1,52	
13	8	29	10	2004	232,02	3008	50,13	-1,69	
16	52	29	10	2004	231,89	3232	53,87	-1,82	
23	30	29	10	2004	231,63	3630	60,50	-2,08	
11	14	30	10	2004	231,21	4334	72,23	-2,50	
20	3	30	10	2004	230,97	4863	81,05	-2,74	
9	53	31	10	2004	230,74	5693	94,88	-2,97	
16	23	31	10	2004	230,69	6083	101,38	-3,02	
12	10	1	11	2004	230,52	7270	121,17	-3,19	
20	10	1	11	2004	230,48	7750	129,17	-3,23	
9	28	2	11	2004	230,37	8548	142,47	-3,34	
13	31	2	11	2004	230,36	8791	146,52	-3,35	
22	7	2	11	2004	230,33	9307	155,12	-3,38	
10	28	3	11	2004	230,24	10048	167,47	-3,47	
14	55	3	11	2004	230,23	10315	171,92	-3,48	
18	35	3	11	2004	230,20	10535	175,58	-3,51	
12	19	4	11	2004	230,11	11599	193,32	-3,60	
19	58	4	11	2004	230,06	12058	200,97	-3,65	
10	43	5	11	2004	230,01	12943	215,72	-3,70	
18	34	5	11	2004	229,96	13414	223,57	-3,75	
9	28	6	11	2004	229,90	14308	238,47	-3,81	
1	26	7	11	2004	229,86	15266	254,43	-3,85	
19	55	7	11	2004	229,77	16375	272,92	-3,94	
9	9	8	11	2004	229,73	17169	286,15	-3,98	
20	42	8	11	2004	229,65	17862	297,70	-4,06	
13	9	9	11	2004	229,64	18849	314,15	-4,07	
9	58	10	11	2004	229,56	20098	334,97	-4,15	
18	52	10	11	2004	229,55	20632	343,87	-4,16	
9	26	11	11	2004	229,51	21506	358,43	-4,20	
17	58	11	11	2004	229,48	22018	366,97	-4,23	
12	21	12	11	2004	229,43	23121	385,35	-4,28	
12	4	13	11	2004	229,39	24544	409,07	-4,32	
20	11	14	11	2004	229,33	26471	441,18	-4,38	
12	33	15	11	2004	229,31	27453	457,55	-4,40	
12	45	16	11	2004	229,27	28905	481,75	-4,44	
10	12	17	11	2004	229,24	30192	503,20	-4,47	
10	19	18	11	2004	229,20	31639	527,32	-4,51	
10	42	19	11	2004	229,18	33102	551,70	-4,53	
12	43	20	11	2004	229,16	34663	577,72	-4,55	
13	10	21	11	2004	229,14	36130	602,17	-4,57	
11	20	22	11	2004	229,14	37460	624,33	-4,57	
11	9	23	11	2004	229.13	38889	648,15	-4.58	

Quadro A2.40 Resultados do ensaio de evaporação do provete IMC 3.2.

Figura A2.40 Ensaio de evaporação do provete IMC 3.2.

PROVETE IMC 4.1									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	2	27	10	2004	233,21	0	0,00	0,00	
11	21	27	10	2004	233,18	19	0,32	-0,03	
12	0	27	10	2004	233,14	58	0,97	-0,07	
13	45	27	10	2004	233,07	163	2,72	-0,14	
14	32	27	10	2004	233,03	210	3,50	-0,18	
16	32	27	10	2004	232,97	330	5,50	-0,24	
18	54	27	10	2004	232,89	472	7,87	-0,32	
0	53	28	10	2004	232,73	831	13,85	-0,48	
7	51	28	10	2004	232,52	1249	20,82	-0,69	
13	9	28	10	2004	232,39	1567	26,12	-0,82	
19	41	28	10	2004	232,21	1959	32,65	-1,00	
7	22	29	10	2004	231,92	2660	44,33	-1,29	
13	9	29	10	2004	231,75	3007	50,12	-1,46	
16	52	29	10	2004	231,64	3230	53,83	-1,57	
23	30	29	10	2004	231,44	3628	60,47	-1,77	
11	15	30	10	2004	231,13	4333	72,22	-2,08	
20	4	30	10	2004	230,94	4862	81,03	-2,27	
9	54	31	10	2004	230,62	5692	94,87	-2,59	
16	23	31	10	2004	230,51	6081	101,35	-2,70	
12	10	1	11	2004	230,23	7268	121,13	-2,98	
20	10	1	11	2004	230,15	7748	129,13	-3,06	
9	28	2	11	2004	230,03	8546	142,43	-3,18	
13	31	2	11	2004	229,99	8789	146,48	-3,22	
22	7	2	11	2004	229,95	9305	155,08	-3,26	
10	29	3	11	2004	229,85	10047	167,45	-3,36	
14	55	3	11	2004	229,82	10313	171,88	-3,39	
18	36	3	11	2004	229,79	10534	175,57	-3,42	
12	20	4	11	2004	229,69	11598	193,30	-3,52	
19	58	4	11	2004	229,64	12056	200,93	-3,57	
10	43	5	11	2004	229,58	12941	215,68	-3,63	
18	35	5	11	2004	229,54	13413	223,55	-3,67	
9	29	6	11	2004	229,47	14307	238,45	-3,74	
1	26	7	11	2004	229,42	15264	254,40	-3,79	
19	56	7	11	2004	229,35	16374	272,90	-3,86	
9	10	8	11	2004	229,32	17168	286,13	-3,89	
20	42	8	11	2004	229,28	17860	297,67	-3,93	
13	10	9	11	2004	229,25	18848	314,13	-3,96	
9	59	10	11	2004	229,21	20097	334,95	-4,00	
18	52	10	11	2004	229,19	20630	343,83	-4,02	
9	27	11	11	2004	229,18	21505	358,42	-4,03	
17	59	11	11	2004	229,17	22017	366,95	-4,04	
12	21	12	11	2004	229,16	23119	385,32	-4,05	
12	4	13	11	2004	229,14	24542	409,03	-4,07	
20	11	14	11	2004	229,12	26469	441,15	-4,09	
12	33	15	11	2004	229,12	27451	457,52	-4,09	
12	45	16	11	2004	229,12	28903	481,72	-4,09	
10	12	17	11	2004	229,12	30190	503,17	-4,09	
10	19	18	11	2004	229,11	31637	527,28	-4,10	
10	42	19	11	2004	229,11	33100	551,67	-4,10	
12	43	20	11	2004	229,11	34661	577,68	-4,10	
13	10	21	11	2004	229,11	36128	602,13	-4,10	
11	20	22	11	2004	229,11	37458	624,30	-4,10	
11	9	23	11	2004	229,11	38887	648,12	-4,10	

Quadro A2.41 Resultados do ensaio de evaporação do provete IMC 4.1.

Figura A2.41 Ensaio de evaporação do provete IMC 4.1.

PROVETE IMC 4.2									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	4	27	10	2004	232,63	0	0,00	0,00	
11	22	27	10	2004	232,61	18	0,30	-0,60	
12	0	27	10	2004	232,57	56	0,93	-0,64	
13	46	27	10	2004	232,51	162	2,70	-0,70	
14	33	27	10	2004	232,46	209	3,48	-0,75	
16	33	27	10	2004	232,41	329	5,48	-0,80	
18	55	27	10	2004	232,36	471	7,85	-0,85	
0	54	28	10	2004	232,20	830	13,83	-1,01	
7	52	28	10	2004	231,97	1248	20,80	-1,24	
13	10	28	10	2004	231,86	1566	26,10	-1,35	
19	42	28	10	2004	231,72	1958	32,63	-1,49	
7	22	29	10	2004	231,48	2658	44,30	-1,73	
13	9	29	10	2004	231,33	3005	50,08	-1,88	
16	53	29	10	2004	231,23	3229	53,82	-1,98	
23	30	29	10	2004	231,07	3626	60,43	-2,14	
11	15	30	10	2004	230,82	4331	72,18	-2,39	
20	4	30	10	2004	230,60	4860	81,00	-2,61	
9	54	31	10	2004	230,24	5690	94,83	-2,97	
16	24	31	10	2004	230,11	6080	101,33	-3,10	
12	10	1	11	2004	229,71	7266	121,10	-3,50	
20	10	1	11	2004	229,63	7746	129,10	-3,58	
9	28	2	11	2004	229,49	8544	142,40	-3,72	
13	31	2	11	2004	229,46	8787	146,45	-3,75	
22	8	2	11	2004	229,42	9304	155,07	-3,79	
10	29	3	11	2004	229,31	10045	167,42	-3,90	
14	56	3	11	2004	229,27	10312	171,87	-3,94	
18	36	3	11	2004	229,26	10532	175,53	-3,95	
12	20	4	11	2004	229,17	11596	193,27	-4,04	
19	58	4	11	2004	229,14	12054	200,90	-4,07	
10	44	5	11	2004	229,07	12940	215,67	-4,14	
18	36	5	11	2004	229,04	13412	223,53	-4,17	
9	29	6	11	2004	228,95	14305	238,42	-4,26	
1	26	7	11	2004	228,93	15262	254,37	-4,28	
19	56	7	11	2004	228,86	16372	272,87	-4,35	
9	11	8	11	2004	228,84	17167	286,12	-4,37	
20	43	8	11	2004	228,80	17859	297,65	-4,41	
13	10	9	11	2004	228,76	18846	314,10	-4,45	
9	59	10	11	2004	228,72	20095	334,92	-4,49	
18	53	10	11	2004	228,70	20629	343,82	-4,51	
9	27	11	11	2004	228,67	21503	358,38	-4,54	
18	0	11	11	2004	228,65	22016	366,93	-4,56	
12	22	12	11	2004	228,64	23118	385,30	-4,57	
12	4	13	11	2004	228,61	24540	409,00	-4,60	
20	11	14	11	2004	228,60	26467	441,12	-4,61	
12	33	15	11	2004	228,58	27449	457,48	-4,63	
12	45	16	11	2004	228,58	28901	481,68	-4,63	
10	12	17	11	2004	228,57	30188	503,13	-4,64	
10	19	18	11	2004	228,57	31635	527,25	-4,64	
10	42	19	11	2004	228,56	33098	551,63	-4,65	
12	43	20	11	2004	228,56	34659	577,65	-4,65	
13	10	21	11	2004	228,56	36126	602,10	-4,65	
11	20	22	11	2004	228,56	3/456	624,27	-4,65	
11	9	23	11	2004	228,55	38885	648,08	-4,66	

Quadro A2.42 Resultados do ensaio de evaporação do provete IMC 4.2.

Figura A2.42 Ensaio de evaporação do provete IMC 4.2.

PROVETE IMC 4.3									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	10	27	10	2004	235,25	0	0,00	0,00	
11	37	27	10	2004	235,19	27	0,45	-0,06	
13	30	27	10	2004	235,11	140	2,33	-0,14	
14	22	27	10	2004	235,05	192	3,20	-0,20	
16	34	27	10	2004	234,99	324	5,40	-0,26	
18	55	27	10	2004	234,91	465	7,75	-0,34	
0	55	28	10	2004	234,72	825	13,75	-0,53	
7	53	28	10	2004	234,49	1243	20,72	-0,76	
13	11	28	10	2004	234,35	1561	26,02	-0,90	
19	43	28	10	2004	234,16	1953	32,55	-1,09	
7	23	29	10	2004	233,83	2653	44,22	-1,42	
13	10	29	10	2004	233,66	3000	50,00	-1,59	
16	53	29	10	2004	233,53	3223	53,72	-1,72	
23	31	29	10	2004	233,32	3621	60,35	-1,93	
11	16	30	10	2004	233,04	4326	72,10	-2,21	
20	4	30	10	2004	232,82	4854	80,90	-2,43	
9	55	31	10	2004	232,54	5685	94,75	-2,71	
16	24	31	10	2004	232,44	6074	101,23	-2,81	
12	11	1	11	2004	232,22	7261	121,02	-3,03	
20	12	1	11	2004	232,17	7742	129,03	-3,08	
9	31	2	11	2004	232,08	8541	142,35	-3,17	
13	34	2	11	2004	232,04	8784	146,40	-3,21	
22	8	2	11	2004	232,02	9298	154,97	-3,23	
10	30	3	11	2004	231,93	10040	167,33	-3,32	
14	56	3	11	2004	231,89	10306	171,77	-3,36	
18	37	3	11	2004	231,88	10527	175,45	-3,37	
12	21	4	11	2004	231,81	11591	193,18	-3,44	
19	59	4	11	2004	231.77	12049	200.82	-3,48	
10	46	5	11	2004	231,72	12936	215,60	-3,53	
18	36	5	11	2004	231.68	13406	223,43	-3.57	
9	30	6	11	2004	231,63	14300	238,33	-3,62	
1	27	7	11	2004	231.59	15257	254.28	-3.66	
19	57	7	11	2004	231,51	16367	272,78	-3,74	
9	11	8	11	2004	231,48	17161	286,02	-3,77	
20	43	8	11	2004	231,45	17853	297,55	-3,80	
13	12	9	11	2004	231,41	18842	314,03	-3,84	
10	0	10	11	2004	231.38	20090	334.83	-3.87	
18	53	10	11	2004	231,36	20623	343,72	-3,89	
9	28	11	11	2004	231,34	21498	358,30	-3,91	
18	0	11	11	2004	231.33	22010	366.83	-3.92	
12	23	12	11	2004	231.31	23113	385.22	-3.94	
12	7	13	11	2004	231.30	24537	408.95	-3.95	
20	13	13	11	2004	231.27	26463	441.05	-3,98	
12	36	15	11	2004	231.27	23.30	457.43	-3.98	
12	48	16	11	2004	231,27	28898	481.63	-3.98	
10	15	17	11	2004	231.27	30185	503.08	-3.98	
10	22	12	11	2004	231,27	31632	527 20	_3,70	
10	22 //	10	11	2004	231,20	22001	551 57	_2 00	
10	44	20	11	2004	231,20	34655	577 52	_2 00	
12	40	20	11	2004	231,20	26100	602.05	-3,77	
13	13 วา	21	11	2004	231,20	27/52	621.20	-3,99	
11	12	22	11	2004	231,20	38882	648.03	-3,99	

Quadro A2.43 Resultados do ensaio de evaporação do provete IMC 4.3.

Figura A2.43 Ensaio de evaporação do provete IMC 4.3.

PROVETE IMC 4.4									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	11	27	10	2004	235,57	0	0,00	0,0000	
11	37	27	10	2004	235,53	26	0,43	-0,0026	
13	31	27	10	2004	235,46	140	2,33	-0,0071	
14	22	27	10	2004	235,40	191	3,18	-0,0110	
16	34	27	10	2004	235,34	323	5,38	-0,0149	
18	56	27	10	2004	235,25	465	7,75	-0,0207	
0	56	28	10	2004	235,07	825	13,75	-0,0323	
7	53	28	10	2004	234,86	1242	20,70	-0,0459	
13	11	28	10	2004	234,72	1560	26,00	-0,0549	
19	43	28	10	2004	234,53	1952	32,53	-0,0672	
7	24	29	10	2004	234,23	2653	44,22	-0,0865	
13	10	29	10	2004	234,08	2999	49,98	-0,0962	
16	54	29	10	2004	233,97	3223	53,72	-0,1033	
23	31	29	10	2004	233,77	3620	60,33	-0,1163	
11	16	30	10	2004	233,47	4325	72,08	-0,1356	
20	5	30	10	2004	233,28	4854	80,90	-0,1479	
9	55	31	10	2004	233,07	5684	94,73	-0,1615	
16	24	31	10	2004	232,99	6073	101,22	-0,1666	
12	11	1	11	2004	232,79	7260	121,00	-0,1796	
20	12	1	11	2004	232,73	7741	129,02	-0,1834	
9	31	2	11	2004	232,64	8540	142,33	-0,1892	
13	34	2	11	2004	232,60	8783	146,38	-0,1918	
22	8	2	11	2004	232,59	9297	154,95	-0,1925	
10	30	3	11	2004	232,49	10039	167,32	-0,1989	
14	57	3	11	2004	232,47	10306	171,77	-0,2002	
18	38	3	11	2004	232,45	10527	175,45	-0,2015	
12	22	4	11	2004	232,39	11591	193,18	-0,2054	
19	59	4	11	2004	232,35	12048	200,80	-0,2080	
10	46	5	11	2004	232,29	12935	215,58	-0,2118	
18	37	5	11	2004	232,27	13406	223,43	-0,2131	
9	30	6	11	2004	232,21	14299	238,32	-0,2170	
1	27	7	11	2004	232,18	15256	254,27	-0,2189	
19	57	7	11	2004	232,09	16366	272,77	-0,2248	
9	12	8	11	2004	232,07	17161	286,02	-0,2261	
20	44	8	11	2004	232,06	17853	297,55	-0,2267	
13	13	9	11	2004	232,02	18842	314,03	-0,2293	
10	0	10	11	2004	231,99	20089	334,82	-0,2312	
18	54	10	11	2004	231,97	20623	343,72	-0,2325	
9	28	11	11	2004	231,95	21497	358,28	-0,2338	
18	1	11	11	2004	231,94	22010	366,83	-0,2345	
12	23	12	11	2004	231,93	23112	385,20	-0,2351	
12	7	13	11	2004	231,90	24536	408,93	-0,2370	
20	13	14	11	2004	231,89	26462	441,03	-0,2377	
12	36	15	11	2004	231,89	27445	457,42	-0,2377	
12	48	16	11	2004	231,88	28897	481,62	-0,2383	
10	15	17	11	2004	231,88	30184	503,07	-0,2383	
10	22	18	11	2004	231,88	31631	527,18	-0,2383	
10	44	19	11	2004	231,88	33093	551,55	-0,2383	
12	45	20	11	2004	231,88	34654	577,57	-0,2383	
13	13	21	11	2004	231,86	36122	602,03	-0,2396	
11	22	22	11	2004	231,86	37451	624,18	-0,2396	
11	12	23	11	2004	231.86	38881	648.02	-0.2396	

Quadro A2.44 Resultados do ensaio de evaporação do provete IMC 4.4.

Figura A2.44 Ensaio de evaporação do provete IMC 4.4.

PROVETE IMC 5.1									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	13	27	10	2004	234,31	0	0,00	0,0000	
11	38	27	10	2004	234,26	25	0,42	-0,0032	
13	32	27	10	2004	234,21	139	2,32	-0,0065	
14	23	27	10	2004	234,16	190	3,17	-0,0097	
16	35	27	10	2004	234,09	322	5,37	-0,0142	
18	57	27	10	2004	234,01	464	7,73	-0,0194	
0	58	28	10	2004	233,84	825	13,75	-0,0304	
7	54	28	10	2004	233,64	1241	20,68	-0,0433	
13	12	28	10	2004	233,51	1559	25,98	-0,0517	
19	44	28	10	2004	233,35	1951	32,52	-0,0620	
7	25	29	10	2004	233,03	2652	44,20	-0,0827	
13	11	29	10	2004	232,89	2998	49,97	-0,0917	
16	54	29	10	2004	232,78	3221	53,68	-0,0988	
23	31	29	10	2004	232,61	3618	60,30	-0,1098	
11	17	30	10	2004	232,33	4324	72,07	-0,1279	
20	5	30	10	2004	232,10	4852	80,87	-0,1427	
9	56	31	10	2004	231,83	5683	94,72	-0,1602	
16	25	31	10	2004	231,70	6072	101,20	-0,1686	
12	11	1	11	2004	231,37	7258	120,97	-0,1899	
20	12	1	11	2004	231,30	7739	128,98	-0,1944	
9	31	2	11	2004	231,18	8538	142,30	-0,2022	
13	34	2	11	2004	231,15	8781	146,35	-0,2041	
22	9	2	11	2004	231,14	9296	154,93	-0,2047	
10	31	3	11	2004	231,02	10038	167,30	-0,2125	
14	57	3	11	2004	231,01	10304	171,73	-0,2131	
18	38	3	11	2004	230,97	10525	175,42	-0,2157	
12	23	4	11	2004	230,88	11590	193,17	-0,2215	
19	59	4	11	2004	230,84	12046	200,77	-0,2241	
10	47	5	11	2004	230,79	12934	215,57	-0,2273	
18	37	5	11	2004	230,76	13404	223,40	-0,2293	
9	31	6	11	2004	230,69	14298	238,30	-0,2338	
1	27	7	11	2004	230,64	15254	254,23	-0,2370	
19	57	7	11	2004	230,57	16364	272,73	-0,2416	
9	12	8	11	2004	230,53	17159	285,98	-0,2441	
20	44	8	11	2004	230,49	17851	297,52	-0,2467	
13	13	9	11	2004	230,45	18840	314,00	-0,2493	
10	1	10	11	2004	230,42	20088	334,80	-0,2512	
18	54	10	11	2004	230,40	20621	343,68	-0,2525	
9	29	11	11	2004	230,37	21496	358,27	-0,2545	
18	1	11	11	2004	230,36	22008	366,80	-0,2551	
12	24	12	11	2004	230,33	23111	385,18	-0,2571	
12	7	13	11	2004	230,30	24534	408,90	-0,2590	
20	13	14	11	2004	230,29	26460	441,00	-0,2596	
12	36	15	11	2004	230,28	27443	457,38	-0,2603	
12	48	16	11	2004	230,27	28895	481,58	-0,2609	
10	15	17	11	2004	230,27	30182	503,03	-0,2609	
10	22	18	11	2004	230,26	31629	527,15	-0,2616	
10	44	19	11	2004	230,26	33091	551,52	-0,2616	
12	45	20	11	2004	230,26	34652	577,53	-0,2616	
13	13	21	11	2004	230,26	36120	602,00	-0,2616	
11	22	22	11	2004	230,26	37449	624,15	-0,2616	
11	12	23	11	2004	230.26	38879	647.98	-0.2616	

Quadro A2.45 Resultados do ensaio de evaporação do provete IMC 5.1.

Figura A2.45 Ensaio de evaporação do provete IMC 5.1.

PROVETE IMC 5.2									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	15	27	10	2004	232,91	0	0,00	0,0000	
11	38	27	10	2004	232,87	23	0,38	-0,0026	
13	32	27	10	2004	232,80	137	2,28	-0,0071	
14	23	27	10	2004	232,76	188	3,13	-0,0097	
16	35	27	10	2004	232,68	320	5,33	-0,0149	
18	57	27	10	2004	232,59	462	7,70	-0,0207	
0	59	28	10	2004	232,44	824	13,73	-0,0304	
7	55	28	10	2004	232,21	1240	20,67	-0,0452	
13	13	28	10	2004	232,11	1558	25,97	-0,0517	
19	44	28	10	2004	231,94	1949	32,48	-0,0626	
7	25	29	10	2004	231,64	2650	44,17	-0,0820	
13	12	29	10	2004	231,48	2997	49,95	-0,0924	
16	55	29	10	2004	231,35	3220	53,67	-0,1008	
23	32	29	10	2004	231,17	3617	60,28	-0,1124	
11	17	30	10	2004	230,85	4322	72,03	-0,1330	
20	5	30	10	2004	230,64	4850	80,83	-0,1466	
9	56	31	10	2004	230,29	5681	94,68	-0,1692	
16	25	31	10	2004	230,13	6070	101,17	-0,1796	
12	11	1	11	2004	229,74	7256	120,93	-0,2047	
20	12	1	11	2004	229,64	7737	128,95	-0,2112	
9	31	2	11	2004	229,49	8536	142,27	-0,2209	
13	34	2	11	2004	229,46	8779	146,32	-0,2228	
22	9	2	11	2004	229,39	9294	154,90	-0,2273	
10	31	3	11	2004	229,30	10036	167,27	-0,2332	
14	58	3	11	2004	229,28	10303	171,72	-0,2345	
18	39	3	11	2004	229,25	10524	175,40	-0,2364	
12	23	4	11	2004	229,15	11588	193,13	-0,2428	
20	0	4	11	2004	229,11	12045	200,75	-0,2454	
10	48	5	11	2004	229,05	12933	215,55	-0,2493	
18	38	5	11	2004	229,00	13403	223,38	-0,2525	
9	31	6	11	2004	228,95	14296	238,27	-0,2558	
1	27	7	11	2004	228,90	15252	254,20	-0,2590	
19	58	7	11	2004	228,83	16363	272,72	-0,2635	
9	13	8	11	2004	228,80	17158	285,97	-0,2655	
20	45	8	11	2004	228,77	17850	297,50	-0,2674	
13	14	9	11	2004	228,73	18839	313,98	-0,2700	
10	1	10	11	2004	228,66	20086	334,77	-0,2745	
18	55	10	11	2004	228,66	20620	343,67	-0,2745	
9	29	11	11	2004	228,62	21494	358,23	-0,2771	
18	2	11	11	2004	228,62	22007	366,78	-0,2771	
12	25	12	11	2004	228,59	23110	385,17	-0,2790	
20	13	14	11	2004	228,54	26458	440,97	-0,2822	
12	36	15	11	2004	228,54	27441	457,35	-0,2822	
12	48	16	11	2004	228,53	28893	481,55	-0,2829	
10	15	17	11	2004	228,52	30180	503,00	-0,2835	
10	22	18	11	2004	228,52	31627	527,12	-0,2835	
10	44	19	11	2004	228,52	33089	551,48	-0,2835	
12	45	20	11	2004	228,52	34650	577,50	-0,2835	
13	13	21	11	2004	228,51	36118	601,97	-0,2842	
11	22	22	11	2004	228,51	3/447	624,12	-0,2842	
11	12	23	11	2004	228,51	38877	647.95	-0.2842	

Quadro A2.46 Resultados do ensaio de evaporação do provete IMC 5.2.

Figura A2.46 Ensaio de evaporação do provete IMC 5.2.

PROVETE IMC 5.3								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	17	27	10	2004	232,85	0	0,00	0,0000
11	38	27	10	2004	232,83	21	0,35	-0,0013
13	33	27	10	2004	232,75	136	2,27	-0,0065
14	24	27	10	2004	232,73	187	3,12	-0,0078
16	36	27	10	2004	232,67	319	5,32	-0,0116
18	58	27	10	2004	232,58	461	7,68	-0,0174
1	0	28	10	2004	232,43	823	13,72	-0,0271
7	55	28	10	2004	232,26	1238	20,63	-0,0381
13	13	28	10	2004	232,13	1556	25,93	-0,0465
19	45	28	10	2004	231,97	1948	32,47	-0,0568
7	26	29	10	2004	231,70	2649	44,15	-0,0743
13	12	29	10	2004	231,57	2995	49,92	-0,0827
16	55	29	10	2004	231,45	3218	53,63	-0,0904
23	32	29	10	2004	231,29	3615	60,25	-0,1008
11	18	30	10	2004	230,98	4321	72,02	-0,1208
20	5	30	10	2004	230,79	4848	80,80	-0,1330
9	57	31	10	2004	230,46	5680	94,67	-0,1544
16	25	31	10	2004	230,30	6068	101,13	-0,1647
12	11	1	11	2004	229,80	7254	120,90	-0,1970
20	12	1	11	2004	229,64	7735	128,92	-0,2073
9	31	2	11	2004	229,41	8534	142,23	-0,2222
13	34	2	11	2004	229,35	8777	146,28	-0,2261
22	9	2	11	2004	229,26	9292	154,87	-0,2319
10	32	3	11	2004	229,14	10035	167,25	-0,2396
14	58	3	11	2004	229,10	10301	171,68	-0,2422
18	39	3	11	2004	229,06	10522	175,37	-0,2448
12	24	4	11	2004	228,95	11587	193,12	-0,2519
20	0	4	11	2004	228,89	12043	200,72	-0,2558
10	48	5	11	2004	228,81	12931	215,52	-0,2609
18	38	5	11	2004	228,76	13401	223,35	-0,2642
9	32	6	11	2004	228,68	14295	238,25	-0,2693
1	27	7	11	2004	228,63	15250	254,17	-0,2726
19	58	7	11	2004	228,55	16361	272,68	-0,2777
9	13	8	11	2004	228,51	17156	285,93	-0,2803
20	46	8	11	2004	228,48	17849	297,48	-0,2822
13	15	9	11	2004	228,43	18838	313,97	-0,2855
10	2	10	11	2004	228,39	20085	334,75	-0,2881
18	55	10	11	2004	228,36	20618	343,63	-0,2900
9	30	11	11	2004	228,35	21493	358,22	-0,2906
18	2	11	11	2004	228,33	22005	366,75	-0,2919
12	25	12	11	2004	228,31	23108	385,13	-0,2932
20	13	14	11	2004	228,27	26456	440,93	-0,2958
12	36	15	11	2004	228,27	27439	457,32	-0,2958
12	48	16	11	2004	228,27	28891	481,52	-0,2958
10	15	17	11	2004	228,27	30178	502,97	-0,2958
10	22	18	11	2004	228,27	31625	527,08	-0,2958
10	44	19	11	2004	228,27	33087	551,45	-0,2958
12	45	20	11	2004	228,26	34648	5/7,47	-0,2965
13	13	21	11	2004	228,26	36116	601,93	-0,2965
11	22	22	11	2004	228,26	3/445	624,08	-0,2965
11	12	23	11	2004	228.26	388/5	647.92	-0,2965

Quadro A2.47 Resultados do ensaio de evaporação do provete IMC 5.3.

Figura A2.47 Ensaio de evaporação do provete IMC 5.3.

PROVETE IMC 5.4								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	19	27	10	2004	231,98	0	0,00	0,0000
11	39	27	10	2004	231,94	20	0,33	-0,0026
13	34	27	10	2004	231,88	135	2,25	-0,0065
14	24	27	10	2004	231,85	185	3,08	-0,0084
16	36	27	10	2004	231,79	317	5,28	-0,0123
18	58	27	10	2004	231,73	459	7,65	-0,0161
1	1	28	10	2004	231,59	822	13,70	-0,0252
7	56	28	10	2004	231,43	1237	20,62	-0,0355
13	14	28	10	2004	231,31	1555	25,92	-0,0433
19	46	28	10	2004	231,17	1947	32,45	-0,0523
7	26	29	10	2004	230,91	2647	44,12	-0,0691
13	13	29	10	2004	230,79	2994	49,90	-0,0769
16	55	29	10	2004	230,69	3216	53,60	-0,0833
23	32	29	10	2004	230,55	3613	60,22	-0.0924
11	18	30	10	2004	230,27	4319	71,98	-0,1104
20	6	30	10	2004	230,10	4847	80,78	-0,1214
9	57	31	10	2004	229,78	5678	94,63	-0,1421
16	25	31	10	2004	229,62	6066	101,10	-0,1524
12	11	1	11	2004	229.14	7252	120.87	-0,1834
20	12	1	11	2004	228,91	7733	128,88	-0,1983
9	31	2	11	2004	228,58	8532	142.20	-0,2196
13	34	2	11	2004	228,51	8775	146,25	-0,2241
22	10	2	11	2004	228,40	9291	154.85	-0,2312
10	32	3	11	2004	228,27	10033	167,22	-0,2396
14	59	3	11	2004	228,23	10300	171,67	-0,2422
18	40	3	11	2004	228,19	10521	175,35	-0,2448
12	25	4	11	2004	228,06	11586	193,10	-0,2532
20	0	4	11	2004	228,02	12041	200,68	-0,2558
10	49	5	11	2004	227,90	12930	215,50	-0,2635
18	39	5	11	2004	227,87	13400	223,33	-0,2655
9	32	6	11	2004	227,81	14293	238,22	-0,2693
1	28	7	11	2004	227,75	15249	254,15	-0,2732
19	58	7	11	2004	227,66	16359	272,65	-0,2790
9	14	8	11	2004	227,62	17155	285,92	-0,2816
20	46	8	11	2004	227,56	17847	297,45	-0,2855
13	15	9	11	2004	227,53	18836	313,93	-0,2874
10	2	10	11	2004	227,48	20083	334,72	-0,2906
18	56	10	11	2004	227,46	20617	343,62	-0,2919
9	31	11	11	2004	227,44	21492	358.20	-0,2932
18	3	11	11	2004	227,42	22004	366,73	-0,2945
12	26	12	11	2004	227.38	23107	385.12	-0,2971
12	7	13	11	2004	227,37	24528	408,80	-0,2977
20	13	14	11	2004	227,32	26454	440,90	-0,3010
12	36	15	11	2004	227.31	27437	457.28	-0.3016
12	48	16	11	2004	227,30	28889	481,48	-0,3023
10	15	17	11	2004	227.29	30176	502.93	-0.3029
10	22	18	11	2004	227.29	31623	527.05	-0.3029
10	44	19	11	2004	227.29	33085	551.42	-0.3029
12	45	20	11	2004	227.29	34646	577,43	-0.3029
13	13	21	11	2004	227.28	36114	601.90	-0.3036
11	22	22	11	2004	227.28	37443	624.05	-0.3036
11	12	23	11	2004	227.27	38873	647.88	-0.3042

Quadro A2.48 Resultados do ensaio de evaporação do provete IMC 5.4.

Figura A2.48 Ensaio de evaporação do provete IMC 5.4.

PROVETE IMC 6.1								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	24	27	10	2004	236,84	0	0,00	0,00
11	53	27	10	2004	236,78	29	0,48	0,00
13	35	27	10	2004	236,67	131	2,18	-0,01
14	24	27	10	2004	236,64	180	3,00	-0,01
16	38	27	10	2004	236,51	314	5,23	-0,02
18	59	27	10	2004	236,39	455	7,58	-0,03
1	1	28	10	2004	236,08	817	13,62	-0,05
7	57	28	10	2004	235,76	1233	20,55	-0,07
13	15	28	10	2004	235,53	1551	25,85	-0,08
19	47	28	10	2004	235,25	1943	32,38	-0,10
8	40	29	10	2004	234,87	2716	45,27	-0,13
14	16	29	10	2004	234,74	3052	50,87	-0,14
16	56	29	10	2004	234,65	3212	53,53	-0,14
23	33	29	10	2004	234,56	3609	60,15	-0,15
11	19	30	10	2004	234,43	4315	71,92	-0,16
20	6	30	10	2004	234,33	4842	80,70	-0,16
9	58	31	10	2004	234,25	5674	94,57	-0,17
16	28	31	10	2004	234,22	6064	101,07	-0,17
12	13	1	11	2004	234,12	7249	120,82	-0,18
20	14	1	11	2004	234,08	7730	128,83	-0,18
9	33	2	11	2004	234,03	8529	142,15	-0,18
13	37	2	11	2004	234,02	8773	146,22	-0,18
10	33	3	11	2004	233,93	10029	167,15	-0,19
15	0	3	11	2004	233,93	10296	171,60	-0,19
18	41	3	11	2004	233,92	10517	175,28	-0,19
12	26	4	11	2004	233,86	11582	193,03	-0,19
20	1	4	11	2004	233,82	12037	200,62	-0,20
10	50	5	11	2004	233,80	12926	215,43	-0,20
18	40	5	11	2004	233,76	13396	223,27	-0,20
9	33	6	11	2004	233,74	14289	238,15	-0,20
1	28	7	11	2004	233,70	15244	254,07	-0,20
19	59	7	11	2004	233,64	16355	272,58	-0,21
9	15	8	11	2004	233,63	17151	285,85	-0,21
20	47	8	11	2004	233,60	17843	297,38	-0,21
13	16	9	11	2004	233,57	18832	313,87	-0,21
10	3	10	11	2004	233,54	20079	334,65	-0,21
18	57	10	11	2004	233,52	20613	343,55	-0,21
9	31	11	11	2004	233,51	21487	358,12	-0,22
18	3	11	11	2004	233,50	21999	366,65	-0,22
12	27	12	11	2004	233,47	23103	385,05	-0,22
12	8	13	11	2004	233,46	24524	408,73	-0,22
20	15	14	11	2004	233,45	26451	440,85	-0,22
12	38	15	11	2004	233,44	27434	457,23	-0,22
12	51	16	11	2004	233,43	28887	481,45	-0,22
10	18	17	11	2004	233,42	30174	502,90	-0,22
10	24	18	11	2004	233,42	31620	527,00	-0,22
10	47	19	11	2004	233,41	33083	551,38	-0,22
12	47	20	11	2004	233,41	34643	577,38	-0,22
13	15	21	11	2004	233,41	36111	601,85	-0,22
11	24	22	11	2004	233,41	37440	624,00	-0,22
11	14	23	11	2004	233,40	38870	647.83	-0.22

Quadro A2.49 Resultados do ensaio de evaporação do provete IMC 6.1.

Figura A2.49 Ensaio de evaporação do provete IMC 6.1.

PROVETE IMC 6.2								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	27	27	10	2004	234,89	0	0,00	0,00
11	54	27	10	2004	234,84	27	0,45	0,00
13	37	27	10	2004	234,74	130	2,17	-0,01
14	25	27	10	2004	234,69	178	2,97	-0,01
16	38	27	10	2004	234,57	311	5,18	-0,02
19	0	27	10	2004	234,43	453	7,55	-0,03
1	2	28	10	2004	234,17	815	13,58	-0,05
7	57	28	10	2004	233,87	1230	20,50	-0,07
13	15	28	10	2004	233,67	1548	25,80	-0,08
19	47	28	10	2004	233,41	1940	32,33	-0,10
8	40	29	10	2004	233,03	2713	45,22	-0,12
14	16	29	10	2004	232,90	3049	50,82	-0,13
16	57	29	10	2004	232,82	3210	53,50	-0,13
23	33	29	10	2004	232,72	3606	60,10	-0,14
11	20	30	10	2004	232,57	4313	71,88	-0,15
20	6	30	10	2004	232,50	4839	80,65	-0,15
9	59	31	10	2004	232,39	5672	94,53	-0,16
16	28	31	10	2004	232,36	6061	101,02	-0,16
12	13	1	11	2004	232,21	7246	120,77	-0,17
20	14	1	11	2004	232,21	7727	128,78	-0,17
9	33	2	11	2004	232,15	8526	142,10	-0,18
13	37	2	11	2004	232,14	8770	146,17	-0,18
22	11	2	11	2004	232,10	9284	154,73	-0,18
10	34	3	11	2004	232,06	10027	167,12	-0,18
15	0	3	11	2004	232,04	10293	171,55	-0,18
18	41	3	11	2004	232,03	10514	175,23	-0,18
12	26	4	11	2004	231,97	11579	192,98	-0,19
20	1	4	11	2004	231,96	12034	200,57	-0,19
10	51	5	11	2004	231,91	12924	215,40	-0,19
18	40	5	11	2004	231,87	13393	223,22	-0,20
9	34	6	11	2004	231,85	14287	238,12	-0,20
1	28	7	11	2004	231,82	15241	254,02	-0,20
19	59	7	11	2004	231,77	16352	272,53	-0,20
9	15	8	11	2004	231,76	17148	285,80	-0,20
20	47	8	11	2004	231,73	17840	297,33	-0,20
13	17	9	11	2004	231,70	18830	313,83	-0,21
10	3	10	11	2004	231,69	20076	334,60	-0,21
18	57	10	11	2004	231,67	20610	343,50	-0,21
9	32	11	11	2004	231,67	21485	358,08	-0,21
18	4	11	11	2004	231,67	21997	366,62	-0,21
12	27	12	11	2004	231,65	23100	385,00	-0,21
12	8	13	11	2004	231,65	24521	408,68	-0,21
20	15	14	11	2004	231,64	26448	440,80	-0,21
12	38	15	11	2004	231,63	27431	457,18	-0,21
12	51	16	11	2004	231,63	28884	481,40	-0,21
10	18	17	11	2004	231,63	30171	502,85	-0,21
10	24	18	11	2004	231,63	31617	526,95	-0,21
10	47	19	11	2004	231,63	33080	551,33	-0,21
12	47	20	11	2004	231,63	34640	577,33	-0,21
13	15	21	11	2004	231,63	36108	601,80	-0,21
11	24	22	11	2004	231,61	37437	623,95	-0,21
11	14	23	11	2004	231.61	38867	647.78	-0.21

Quadro A2.50 Resultados do ensaio de evaporação do provete IMC 6.2.

Figura A2.50 Ensaio de evaporação do provete IMC 6.2.

PROVETE IMC 6.3									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	29	27	10	2004	239,29	0	0,00	0,00	
11	54	27	10	2004	239,24	25	0,42	0,00	
13	37	27	10	2004	239,15	128	2,13	-0,01	
14	25	27	10	2004	239,10	176	2,93	-0,01	
16	39	27	10	2004	238,99	310	5,17	-0,02	
19	0	27	10	2004	238,89	451	7,52	-0,03	
1	3	28	10	2004	238,66	814	13,57	-0,04	
7	58	28	10	2004	238,43	1229	20,48	-0,06	
13	16	28	10	2004	238,25	1547	25,78	-0,07	
19	48	28	10	2004	238,03	1939	32,32	-0,08	
8	40	29	10	2004	237,66	2711	45,18	-0,11	
14	16	29	10	2004	237,49	3047	50,78	-0,12	
16	57	29	10	2004	237,44	3208	53,47	-0,12	
23	34	29	10	2004	237,31	3605	60,08	-0,13	
11	20	30	10	2004	237,17	4311	71,85	-0,14	
20	7	30	10	2004	237,09	4838	80,63	-0,14	
9	59	31	10	2004	236,98	5670	94,50	-0,15	
16	28	31	10	2004	236,95	6059	100,98	-0,15	
12	13	1	11	2004	236,86	7244	120,73	-0,16	
20	14	1	11	2004	236,82	7725	128,75	-0,16	
9	33	2	11	2004	236,76	8524	142,07	-0,16	
13	37	2	11	2004	236,73	8768	146,13	-0,17	
22	11	2	11	2004	236.73	9282	154.70	-0.17	
10	34	3	11	2004	236.68	10025	167.08	-0,17	
15	1	3	11	2004	236.67	10292	171.53	-0,17	
18	42	3	11	2004	236.65	10513	175.22	-0,17	
12	27	4	11	2004	236,60	11578	192,97	-0,17	
20	1	4	11	2004	236,59	12032	200,53	-0.17	
10	52	5	11	2004	236,54	12923	215,38	-0,18	
18	41	5	11	2004	236.51	13392	223.20	-0.18	
9	34	6	11	2004	236,47	14285	238,08	-0,18	
1	29	7	11	2004	236,45	15240	254.00	-0.18	
20	0	7	11	2004	236,37	16351	272,52	-0,19	
9	16	8	11	2004	236,37	17147	285,78	-0,19	
20	48	8	11	2004	236,33	17839	297,32	-0,19	
13	18	9	11	2004	236,31	18829	313,82	-0,19	
10	4	10	11	2004	236,28	20075	334,58	-0.19	
18	58	10	11	2004	236,25	20609	343,48	-0,20	
9	32	11	11	2004	236,25	21483	358.05	-0.20	
18	4	11	11	2004	236.22	21995	366.58	-0.20	
12	28	12	11	2004	236.20	23099	384.98	-0.20	
12	8	13	11	2004	236,18	24519	408.65	-0.20	
20	15	14	11	2004	236.15	26446	440.77	-0.20	
12	.38	15	11	2004	236.14	27429	457.15	-0.20	
12	51	16	11	2004	236.13	28882	481.37	-0.20	
10	18	17	11	2004	236.11	30169	502.82	-0.21	
10	24	18	11	2004	236,11	31615	526 92	_0.21	
10	24 //7	10	11	2004	230,11	22072	551 20	_0.21	
10	47	20	11	2004	230,10	31638	577 20	_0.21	
12	15	20	11	2004	230,10	34030	601 77	_0.21	
13	24	21	11	2004	230,07	27/25	672 02	-0,21	
11	14	22	11	2004	230,09	38865	647 75	-0,21	

Quadro A2.51 Resultados do ensaio de evaporação do provete IMC 6.3.

Figura A2.51 Ensaio de evaporação do provete IMC 6.3.

PROVETE IMC 7.1									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	32	27	10	2004	236,16	0	0,00	0,0000	
11	54	27	10	2004	236,11	22	0,37	-0,0032	
13	38	27	10	2004	236,02	126	2,10	-0,0090	
14	26	27	10	2004	235,99	174	2,90	-0,0110	
16	39	27	10	2004	235,90	307	5,12	-0,0168	
19	1	27	10	2004	235,79	449	7,48	-0,0239	
1	3	28	10	2004	235,53	811	13,52	-0,0407	
7	59	28	10	2004	235,24	1227	20,45	-0,0594	
13	16	28	10	2004	235,01	1544	25,73	-0,0743	
19	48	28	10	2004	234,75	1936	32,27	-0,0911	
8	40	29	10	2004	234,32	2708	45,13	-0,1188	
14	16	29	10	2004	234,14	3044	50,73	-0,1305	
16	57	29	10	2004	234,02	3205	53,42	-0,1382	
23	34	29	10	2004	233,85	3602	60,03	-0,1492	
11	21	30	10	2004	233,67	4309	71,82	-0,1608	
20	7	30	10	2004	233,57	4835	80,58	-0,1673	
10	0	31	10	2004	233,46	5668	94,47	-0,1744	
16	28	31	10	2004	233,41	6056	100,93	-0,1776	
12	13	1	11	2004	233,28	7241	120,68	-0,1860	
20	14	1	11	2004	233,25	7722	128,70	-0,1879	
9	33	2	11	2004	233,19	8521	142,02	-0,1918	
13	37	2	11	2004	233,16	8765	146,08	-0,1938	
22	11	2	11	2004	233.14	9279	154.65	-0,1951	
10	35	3	11	2004	233.08	10023	167.05	-0,1989	
15	1	3	11	2004	233.06	10289	171,48	-0,2002	
18	42	3	11	2004	233,04	10510	175,17	-0,2015	
12	28	4	11	2004	232,99	11576	192,93	-0,2047	
20	2	4	11	2004	232,96	12030	200,50	-0,2067	
10	52	5	11	2004	232,92	12920	215,33	-0,2093	
18	41	5	11	2004	232,90	13389	223.15	-0,2106	
9	35	6	11	2004	232,85	14283	238,05	-0,2138	
1	29	7	11	2004	232.82	15237	253.95	-0,2157	
20	0	7	11	2004	232,77	16348	272,47	-0,2189	
9	16	8	11	2004	232,75	17144	285,73	-0,2202	
20	48	8	11	2004	232,75	17836	297,27	-0,2202	
13	18	9	11	2004	232,71	18826	313,77	-0,2228	
10	4	10	11	2004	232.70	20072	334.53	-0,2235	
18	58	10	11	2004	232,69	20606	343,43	-0,2241	
9	34	11	11	2004	232,68	21482	358.03	-0,2248	
18	5	11	11	2004	232,68	21993	366,55	-0,2248	
12	29	12	11	2004	232.67	23097	384.95	-0.2254	
12	8	13	11	2004	232.67	24516	408.60	-0.2254	
20	15	14	11	2004	232.66	26443	440.72	-0.2261	
12	.38	15	11	2004	232,66	27426	457.10	-0.2261	
12	51	16	11	2004	232,56	28879	481.32	-0.2261	
10	18	17	11	2004	232,66	30166	502.77	-0.2261	
10	24	18	11	2004	232,00	31612	526.87	-0 2261	
10	<u>۲</u>	10	11	2004	232,00	31012	551 25	_0.2201	
10	47	20	11	2004	232,00	34635	577 25	_0 2201	
12	15	20	11	2004	232,00	26102	601 72	_0.2201	
13	24	21	11	2004	232,00	27/22	622 27	_0,2201	
11	14	22	11	2004	232,50	38862	647.70	-0.2261	

Quadro A2.52 Resultados do ensaio de evaporação do provete IMC 7.1.

Figura A2.52 Ensaio de evaporação do provete IMC 7.1.
			PF	ROVETE IMC 7	1.2			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	34	27	10	2004	237,08	0	0,00	0,00
11	55	27	10	2004	237,04	21	0,35	0,00
13	38	27	10	2004	236,95	124	2,07	-0,01
14	26	27	10	2004	236,91	172	2,87	-0,01
16	40	27	10	2004	236,81	306	5,10	-0,02
19	1	27	10	2004	236,69	447	7,45	-0,03
1	4	28	10	2004	236,46	810	13,50	-0,04
7	59	28	10	2004	236,20	1225	20,42	-0,06
13	17	28	10	2004	236,01	1543	25,72	-0,07
19	49	28	10	2004	235,74	1935	32,25	-0,09
8	40	29	10	2004	235,33	2706	45,10	-0,11
14	16	29	10	2004	235,14	3042	50,70	-0,13
16	58	29	10	2004	235,04	3204	53,40	-0,13
23	34	29	10	2004	234,89	3600	60,00	-0,14
11	21	30	10	2004	234,72	4307	71,78	-0,15
20	7	30	10	2004	234,64	4833	80,55	-0,16
10	0	31	10	2004	234,53	5666	94,43	-0,16
16	28	31	10	2004	234,49	6054	100,90	-0,17
12	13	1	11	2004	234,38	7239	120,65	-0,17
20	14	1	11	2004	234,34	7720	128,67	-0,18
9	33	2	11	2004	234,28	8519	141,98	-0,18
13	37	2	11	2004	234,27	8763	146,05	-0,18
22	12	2	11	2004	234,24	9278	154,63	-0,18
10	35	3	11	2004	234,20	10021	167,02	-0,19
15	2	3	11	2004	234,18	10288	171,47	-0,19
18	43	3	11	2004	234,17	10509	175,15	-0,19
12	28	4	11	2004	234,12	11574	192,90	-0,19
20	2	4	11	2004	234,08	12028	200,47	-0,19
10	53	5	11	2004	234,05	12919	215,32	-0,20
18	41	5	11	2004	234,03	13387	223,12	-0,20
9	35	6	11	2004	233,99	14281	238,02	-0,20
1	29	7	11	2004	233,96	15235	253,92	-0,20
20	0	7	11	2004	233,91	16346	272,43	-0,20
9	17	8	11	2004	233,90	17143	285,72	-0,21
20	48	8	11	2004	233,87	17834	297,23	-0,21
13	19	9	11	2004	233,85	18825	313,75	-0,21
10	5	10	11	2004	233,84	20071	334,52	-0,21
18	59	10	11	2004	233,83	20605	343,42	-0,21
9	34	11	11	2004	233,83	21480	358,00	-0,21
18	5	11	11	2004	233,82	21991	366,52	-0,21
12	29	12	11	2004	233,81	23095	384,92	-0,21
12	8	13	11	2004	233,81	24514	408,57	-0,21
20	15	14	11	2004	233,81	26441	440,68	-0,21
12	38	15	11	2004	233,80	27424	457,07	-0,21
12	51	16	11	2004	233,80	28877	481,28	-0,21
10	18	17	11	2004	233,79	30164	502,73	-0,21
10	24	18	11	2004	233,78	31610	526,83	-0,21
10	47	19	11	2004	233,78	33073	551,22	-0,21
12	47	20	11	2004	233,78	34633	577,22	-0,21
13	15	21	11	2004	233,78	36101	601,68	-0,21
11	24	22	11	2004	233,78	37430	623,83	-0,21
11	14	23	11	2004	233.78	38860	647.67	-0.21

Quadro A2.53 Resultados do ensaio de evaporação do provete IMC 7.2.

Figura A2.53 Ensaio de evaporação do provete IMC 7.2.

			PF	PROVETE IMC 7.3					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	36	27	10	2004	236,89	0	0,00	0,00	
11	55	27	10	2004	236,84	19	0,32	0,00	
13	39	27	10	2004	236,76	123	2,05	-0,01	
14	26	27	10	2004	236,73	170	2,83	-0,01	
16	40	27	10	2004	236,64	304	5,07	-0,02	
19	2	27	10	2004	236,54	446	7,43	-0,02	
1	5	28	10	2004	236,35	809	13,48	-0,03	
8	0	28	10	2004	236,14	1224	20,40	-0,05	
13	18	28	10	2004	235,96	1542	25,70	-0,06	
19	49	28	10	2004	235,74	1933	32,22	-0,07	
8	40	29	10	2004	235,38	2704	45,07	-0,10	
14	16	29	10	2004	235,20	3040	50,67	-0,11	
16	58	29	10	2004	235,07	3202	53,37	-0,12	
23	35	29	10	2004	234,88	3599	59,98	-0,13	
11	22	30	10	2004	234,69	4306	71,77	-0,14	
20	7	30	10	2004	234,62	4831	80,52	-0,15	
10	1	31	10	2004	234,49	5665	94,42	-0,16	
16	28	31	10	2004	234,45	6052	100,87	-0,16	
12	13	1	11	2004	234,35	7237	120,62	-0,16	
20	14	1	11	2004	234,33	7718	128,63	-0,17	
9	33	2	11	2004	234,27	8517	141,95	-0,17	
13	37	2	11	2004	234,25	8761	146,02	-0,17	
22	12	2	11	2004	234,22	9276	154,60	-0,17	
10	36	3	11	2004	234,18	10020	167.00	-0,18	
15	2	3	11	2004	234,17	10286	171,43	-0,18	
18	43	3	11	2004	234,15	10507	175,12	-0,18	
12	29	4	11	2004	234,10	11573	192,88	-0,18	
20	2	4	11	2004	234.06	12026	200,43	-0,18	
10	53	5	11	2004	234,03	12917	215,28	-0,18	
18	42	5	11	2004	234.01	13386	223.10	-0,19	
9	36	6	11	2004	233,97	14280	238,00	-0,19	
1	30	7	11	2004	233.94	15234	253.90	-0,19	
20	1	7	11	2004	233,87	16345	272,42	-0,20	
9	17	8	11	2004	233,87	17141	285,68	-0,20	
20	49	8	11	2004	233,87	17833	297,22	-0,20	
13	19	9	11	2004	233,82	18823	313,72	-0,20	
10	5	10	11	2004	233.80	20069	334,48	-0.20	
18	59	10	11	2004	233,78	20603	343,38	-0,20	
9	35	11	11	2004	233.77	21479	357,98	-0,20	
18	6	11	11	2004	233.76	21990	366.50	-0.20	
12	30	12	11	2004	233.75	23094	384.90	-0.20	
12	8	13	11	2004	233,73	24512	408.53	-0.20	
20	15	13	11	2004	233.72	26439	440.65	-0.20	
12	.38	15	11	2004	233.72	23.37	457.03	-0.20	
12	51	16	11	2004	233.71	28875	481.25	-0.21	
10	18	17	11	2004	233,71	30162	502.70	-0.21	
10	24	12	11	2004	233,71	31608	526.80	_0.21	
10	24 //7	10	11	2004	233,71	22071	551 19	_0.21	
10	47 47	20	11	2004	233,07	33671	577 18	_0.21	
12	15	20	11	2004	233,07	24000	601.65	_0.21	
13	24	21	11	2004	233,07	27/120	623 80	_0,21 _0.21	
11	14	22	11	2004	233,69	38858	647.63	-0.21	

Quadro A2.54 Resultados do ensaio de evaporação do provete IMC 7.3.

Figura A2.54 Ensaio de evaporação do provete IMC 7.3.

			PF	PROVETE IMC 8.1					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	41	27	10	2004	230,90	0	0,00	0,00	
12	6	27	10	2004	230,85	25	0,42	0,00	
13	39	27	10	2004	230,75	118	1,97	-0,01	
14	27	27	10	2004	230,70	166	2,77	-0,01	
16	41	27	10	2004	230,61	300	5,00	-0,02	
19	3	27	10	2004	230,49	442	7,37	-0,03	
1	5	28	10	2004	230,24	804	13,40	-0,04	
8	1	28	10	2004	229,98	1220	20,33	-0,06	
13	20	28	10	2004	229,78	1539	25,65	-0,07	
19	50	28	10	2004	229,47	1929	32,15	-0,09	
8	45	29	10	2004	229,01	2704	45,07	-0,12	
14	21	29	10	2004	228,81	3040	50,67	-0,14	
16	47	29	10	2004	228,70	3186	53,10	-0,14	
23	35	29	10	2004	228,57	3594	59,90	-0,15	
11	22	30	10	2004	228,41	4301	71,68	-0,16	
20	8	30	10	2004	228,30	4827	80,45	-0,17	
10	2	31	10	2004	228,23	5661	94,35	-0,18	
16	30	31	10	2004	228,18	6049	100,82	-0,18	
12	15	1	11	2004	228,07	7234	120,57	-0,19	
20	16	1	11	2004	228,04	7715	128,58	-0,19	
9	35	2	11	2004	227.97	8514	141.90	-0.19	
13	39	2	11	2004	227.95	8758	145.97	-0,19	
22	12	2	11	2004	227.91	9271	154.52	-0.20	
10	36	3	11	2004	227.86	10015	166.92	-0.20	
15	3	3	11	2004	227.85	10282	171.37	-0.20	
18	44	3	11	2004	227.84	10503	175.05	-0.20	
12	31	4	11	2004	227.78	11570	192.83	-0.21	
20	2	4	11	2004	227.76	12021	200.35	-0.21	
11	0	5	11	2004	227.71	12919	215.32	-0.21	
18	48	5	11	2004	227.69	13387	223.12	-0.21	
9	36	6	11	2004	227.64	14275	237.92	-0.21	
1	30	7	11	2004	227.61	15229	253.82	-0.22	
20	1	7	11	2004	227.56	16340	272.33	-0.22	
9	18	8	11	2004	227,55	17137	285.62	-0.22	
20	50	8	11	2004	227.51	17829	297.15	-0.22	
13	20	9	11	2004	227.50	18819	313.65	-0.22	
10	6	10	11	2004	227,47	20065	334,42	-0.23	
19	0	10	11	2004	227.47	20599	343.32	-0.23	
9	35	11	11	2004	227.46	21474	357.90	-0.23	
18	7	11	11	2004	227.44	21986	366.43	-0.23	
12	30	12	11	2004	227.44	23089	384.82	-0.23	
12	10	13	11	2004	227,44	24509	408.48	-0.23	
20	17	14	11	2004	227.44	26436	440.60	-0.23	
12	40	15	11	2004	227,11	23130	456.98	-0.23	
12	53	16	11	2004	227,43	28872	481.20	-0.23	
10	20	17	11	2004	227,12	30159	502.65	-0.23	
10	26	18	11	2004	227,41	31605	526.75	-0.23	
10	 19	10	11	2004	227,41	33068	551.13	-0.23	
10	49 19	20	11	2004	227,41	34628	577,13	-0.23	
12	17	20	11	2004	227,41	36096	601.60	-0.23	
11	26	21	11	2004	227,41	37425	623.75	-0.23	
11	18	23	11	2004	227.41	38857	647.62	-0.23	

Quadro A2.55 Resultados do ensaio de evaporação do provete IMC 8.1.

Figura A2.55 Ensaio de evaporação do provete IMC 8.1.

			PF	PROVETE IMC 8.2					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	43	27	10	2004	232,10	0	0,00	0,00	
12	7	27	10	2004	232,05	24	0,40	0,00	
13	40	27	10	2004	231,96	117	1,95	-0,01	
14	27	27	10	2004	231,91	164	2,73	-0,01	
16	42	27	10	2004	231,79	299	4,98	-0,02	
19	3	27	10	2004	231,66	440	7,33	-0,03	
1	6	28	10	2004	231,37	803	13,38	-0,05	
8	3	28	10	2004	231,09	1220	20,33	-0,07	
13	21	28	10	2004	230,83	1538	25,63	-0,08	
19	50	28	10	2004	230,55	1927	32,12	-0,10	
8	45	29	10	2004	230,11	2702	45,03	-0,13	
14	21	29	10	2004	229,96	3038	50,63	-0,14	
16	47	29	10	2004	229,89	3184	53,07	-0,15	
23	35	29	10	2004	229.78	3592	59.87	-0.15	
11	23	30	10	2004	229.65	4300	71.67	-0.16	
20	8	30	10	2004	229,58	4825	80.42	-0.17	
10	2	31	10	2004	229.49	5659	94.32	-0.17	
16	30	31	10	2004	229.45	6047	100.78	-0.17	
12	15	1	11	2004	229.36	7232	120.53	-0.18	
20	16	1	11	2004	229.33	7713	128,55	-0.18	
9	35	2	11	2004	229,00	8512	141 87	-0 19	
13	39	2	11	2004	229,25	8756	145.93	-0.19	
22	13	2	11	2004	227,20	9270	154 50	-0.19	
10	37	3	11	2004	227,23	10014	166 90	-0,19	
15	3	3	11	2004	229,10	10280	171 33	-0.19	
13	45	3	11	2004	227,15	10200	171,55	-0,19	
10	31	4	11	2004	229,10	11568	192.80	-0,17	
20	3	4	11	2004	229,10	12020	200.33	-0.20	
11	0	5	11	2004	229,00	12020	200,33	-0,20	
18	49	5	11	2004	229,00	13386	213,20	-0.20	
9	37	6	11	2004	227,00	14274	223,10	-0,20	
, 1	30	7	11	2004	220,77	15227	257,70	-0,21	
20	1	7	11	2004	220,70	16338	233,70	-0,21	
9	18	, 8	11	2004	220,00	17135	285 58	-0,21	
20	50	8	11	2004	228,85	17827	200,00	-0.21	
13	21	9	11	2004	220,03	18818	313.63	-0,21	
10	6	10	11	2004	228,80	20063	334 38	-0.22	
19	0	10	11	2004	220,01	20003	343 28	-0.22	
0	26	10	11	2004	220,00	20377	257 22	_0,22	
18	7	11	11	2004	220,70	21984	366 40	-0.22	
13	, 31	12	11	2004	228,78	23088	384.80	-0.22	
12	10	12	11	2004	220,77	23600	408.45	-0.22	
20	10	13	11	2004	220,70	24307	440 57	-0.22	
12	17	14	11	2004	220,70	20434	440,37	-0,22	
12	40 52	10	11	2004	220,70	27417	400,90	-0,22 _0.22	
12	20	10	11	2004	220,75	20070	502.62	-0,22 _0.22	
10	20	10	11	2004	220,13	21402	502,02	-0,22	
10	20	10	11	2004	220,74	22044	520,72	-0,22	
10	49	19	11	2004	220,74	33000	551,10	-0,22	
12	49	20	11	2004	220,74	34020	277,10 201 F7	-0,22	
13	1/	21	11	2004	228,74	30094	2001,37	-0,22	
11	10	22	11	2004	220,74	3/423 20055	617 50	-0,22	

Quadro A2.56 Resultados do ensaio de evaporação do provete IMC 8.2.

Figura A2.56 Ensaio de evaporação do provete IMC 8.2.

			PF	PROVETE IMC 8.3					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	45	27	10	2004	233,26	0	0,00	0,00	
12	7	27	10	2004	233,21	22	0,37	0,00	
13	40	27	10	2004	233,13	115	1,92	-0,01	
14	27	27	10	2004	233,08	162	2,70	-0,01	
16	42	27	10	2004	232,96	297	4,95	-0,02	
19	4	27	10	2004	232,83	439	7,32	-0,03	
1	7	28	10	2004	232,55	802	13,37	-0,05	
8	3	28	10	2004	232,22	1218	20,30	-0,07	
13	22	28	10	2004	231,97	1537	25,62	-0,08	
19	51	28	10	2004	231,72	1926	32,10	-0,10	
8	45	29	10	2004	231,33	2700	45,00	-0,13	
14	21	29	10	2004	231,18	3036	50,60	-0,14	
16	48	29	10	2004	231,12	3183	53,05	-0,14	
23	36	29	10	2004	231,03	3591	59,85	-0,15	
11	23	30	10	2004	230,90	4298	71,63	-0,16	
20	9	30	10	2004	230,83	4824	80,40	-0,16	
10	3	31	10	2004	230,75	5658	94,30	-0,17	
16	30	31	10	2004	230,72	6045	100,75	-0,17	
12	15	1	11	2004	230,63	7230	120,50	-0,17	
20	16	1	11	2004	230,60	7711	128,52	-0,17	
9	35	2	11	2004	230,54	8510	141,83	-0,18	
13	39	2	11	2004	230,53	8754	145,90	-0,18	
22	13	2	11	2004	230,51	9268	154,47	-0,18	
10	37	3	11	2004	230,44	10012	166,87	-0,19	
15	4	3	11	2004	230,44	10279	171,32	-0,19	
18	46	3	11	2004	230,44	10501	175,02	-0,19	
12	32	4	11	2004	230,39	11567	192,78	-0,19	
20	3	4	11	2004	230,36	12018	200,30	-0,19	
11	0	5	11	2004	230,32	12915	215,25	-0,19	
18	49	5	11	2004	230,29	13384	223,07	-0,20	
9	37	6	11	2004	230,26	14272	237,87	-0,20	
1	30	7	11	2004	230,25	15225	253,75	-0,20	
20	2	7	11	2004	230,18	16337	272,28	-0,20	
9	19	8	11	2004	230,17	17134	285,57	-0,20	
20	51	8	11	2004	230,16	17826	297,10	-0,20	
13	22	9	11	2004	230,13	18817	313,62	-0,21	
10	7	10	11	2004	230,11	20062	334,37	-0,21	
19	1	10	11	2004	230,10	20596	343,27	-0,21	
9	36	11	11	2004	230,09	21471	357,85	-0,21	
18	8	11	11	2004	230,09	21983	366,38	-0,21	
12	32	12	11	2004	230,08	23087	384,78	-0,21	
12	10	13	11	2004	230,08	24505	408,42	-0,21	
20	17	14	11	2004	230,07	26432	440,53	-0,21	
12	40	15	11	2004	230,07	27415	456,92	-0,21	
12	53	16	11	2004	230,07	28868	481,13	-0,21	
10	20	17	11	2004	230,06	30155	502,58	-0,21	
10	26	18	11	2004	230,06	31601	526,68	-0,21	
10	49	19	11	2004	230,06	33064	551,07	-0,21	
12	49	20	11	2004	230,06	34624	577,07	-0,21	
13	17	21	11	2004	230,06	36092	601,53	-0,21	
11	26	22	11	2004	230,05	37421	623,68	-0,21	
11	18	23	11	2004	230.05	38853	647.55	-0.21	

Quadro A2.57 Resultados do ensaio de evaporação do provete IMC 8.3.

Figura A2.57 Ensaio de evaporação do provete IMC 8.3.

			PF	ROVETE IMC 9	9.1				
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	47	27	10	2004	234,30	0	0,00	0,00	
12	7	27	10	2004	234,26	20	0,33	0,00	
13	40	27	10	2004	234,19	113	1,88	-0,01	
14	28	27	10	2004	234,15	161	2,68	-0,01	
16	42	27	10	2004	234,06	295	4,92	-0,02	
19	5	27	10	2004	233,97	438	7,30	-0,02	
1	7	28	10	2004	233,75	800	13,33	-0,04	
8	4	28	10	2004	233,51	1217	20,28	-0,05	
13	22	28	10	2004	233,31	1535	25,58	-0,07	
19	52	28	10	2004	233,07	1925	32,08	-0,08	
8	45	29	10	2004	232,65	2698	44,97	-0,11	
14	21	29	10	2004	232,47	3034	50,57	-0,12	
16	48	29	10	2004	232,34	3181	53,02	-0,13	
23	36	29	10	2004	232,15	3589	59.82	-0.14	
11	24	30	10	2004	231,92	4297	71,62	-0,16	
20	9	30	10	2004	231.83	4822	80,37	-0,16	
10	3	31	10	2004	231.71	5656	94.27	-0,17	
16	30	31	10	2004	231.65	6043	100,72	-0,17	
12	15	1	11	2004	231.52	7228	120,47	-0,18	
20	16	1	11	2004	231,46	7709	128,48	-0,19	
9	35	2	11	2004	231.41	8508	141.80	-0.19	
13	39	2	11	2004	231.39	8752	145.87	-0.19	
22	13	2	11	2004	231.36	9266	154.43	-0.19	
10	38	3	11	2004	231.30	10011	166.85	-0.20	
15	4	3	11	2004	231.28	10277	171.28	-0.20	
18	48	3	11	2004	231.27	10501	175.02	-0.20	
12	33	4	11	2004	231.17	11566	192.77	-0.21	
20	3	4	11	2004	231.17	12016	200.27	-0.21	
11	0	5	11	2004	231.12	12913	215.22	-0.21	
18	50	5	11	2004	231.10	13383	223.05	-0.21	
9	38	6	11	2004	231.04	14271	237.85	-0.21	
1	31	7	11	2004	231.02	15224	253.73	-0.22	
20	2	7	11	2004	230.97	16335	272.25	-0.22	
9	19	8	11	2004	230.95	17132	285.53	-0.22	
20	51	8	11	2004	230.93	17824	297.07	-0.22	
13	22	9	11	2004	230.91	18815	313.58	-0.22	
10	7	10	11	2004	230.90	20060	334.33	-0.22	
19	1	10	11	2004	230.89	20594	343.23	-0.22	
9	37	11	11	2004	230.89	21470	357.83	-0.22	
18	8	11	11	2004	230.89	21981	366.35	-0.22	
12	32	12	11	2004	230.87	23085	384.75	-0.23	
12	10	13	11	2004	230.87	24503	408.38	-0.23	
20	17	14	11	2004	230.87	26430	440.50	-0.23	
12	40	15	11	2004	230.87	27413	456.88	-0.23	
12	53	16	11	2004	230.87	28866	481,10	-0.23	
10	20	17	11	2004	230.87	30153	502.55	-0.23	
10	26	18	11	2004	230.87	31599	526.65	-0.23	
10	49	19	11	2004	230.87	33062	551.03	-0.23	
12	49	20	11	2004	230,87	34622	577.03	-0.23	
13	17	21	11	2004	230.87	36090	601.50	-0.23	
11	26	22	11	2004	230,87	37419	623.65	-0.23	
11	18	23	11	2004	230.87	38851	647.52	-0.23	

Quadro A2.58 Resultados do ensaio de evaporação do provete IMC 9.1.

Figura A2.58 Ensaio de evaporação do provete IMC 9.1.

			PF	PROVETE IMC 9.2					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	50	27	10	2004	232,94	0	0,00	0,00	
12	7	27	10	2004	232,90	17	0,28	0,00	
13	41	27	10	2004	232,82	111	1,85	-0,01	
14	28	27	10	2004	232,79	158	2,63	-0,01	
16	43	27	10	2004	232,69	293	4,88	-0,02	
19	5	27	10	2004	232,59	435	7,25	-0,02	
1	8	28	10	2004	232,35	798	13,30	-0,04	
8	5	28	10	2004	232,10	1215	20,25	-0,06	
13	23	28	10	2004	231,89	1533	25,55	-0,07	
19	52	28	10	2004	231,63	1922	32,03	-0,09	
8	45	29	10	2004	231,20	2695	44,92	-0,11	
14	21	29	10	2004	230,99	3031	50,52	-0,13	
16	48	29	10	2004	230,87	3178	52,97	-0,14	
23	36	29	10	2004	230,71	3586	59,77	-0,15	
11	24	30	10	2004	230,55	4294	71,57	-0,16	
20	9	30	10	2004	230,46	4819	80,32	-0,16	
10	4	31	10	2004	230,35	5654	94,23	-0,17	
16	30	31	10	2004	230,31	6040	100,67	-0,17	
12	15	1	11	2004	230,20	7225	120,42	-0,18	
20	16	1	11	2004	230,17	7706	128,43	-0,18	
9	35	2	11	2004	230,12	8505	141,75	-0,19	
13	39	2	11	2004	230,09	8749	145,82	-0,19	
22	14	2	11	2004	230,06	9264	154,40	-0,19	
10	38	3	11	2004	230,02	10008	166,80	-0,19	
15	5	3	11	2004	230,00	10275	171,25	-0,19	
18	48	3	11	2004	229,98	10498	174,97	-0,19	
12	33	4	11	2004	229,92	11563	192,72	-0,20	
20	4	4	11	2004	229,91	12014	200,23	-0,20	
11	0	5	11	2004	229,86	12910	215,17	-0,20	
18	51	5	11	2004	229,83	13381	223,02	-0,20	
9	38	6	11	2004	229,79	14268	237,80	-0,21	
1	31	7	11	2004	229,77	15221	253,68	-0,21	
20	2	7	11	2004	229,73	16332	272,20	-0,21	
9	20	8	11	2004	229,71	17130	285,50	-0,21	
20	52	8	11	2004	229,69	17822	297,03	-0,21	
13	23	9	11	2004	229,68	18813	313,55	-0,21	
10	8	10	11	2004	229,66	20058	334,30	-0,22	
19	2	10	11	2004	229,66	20592	343,20	-0,22	
9	37	11	11	2004	229,64	21467	357,78	-0,22	
18	8	11	11	2004	229,64	21978	366,30	-0,22	
12	33	12	11	2004	229,63	23083	384,72	-0,22	
12	10	13	11	2004	229,63	24500	408,33	-0,22	
20	17	14	11	2004	229,62	26427	440,45	-0,22	
12	40	15	11	2004	229,62	27410	456,83	-0,22	
12	53	16	11	2004	229,62	28863	481,05	-0,22	
10	20	17	11	2004	229,62	30150	502,50	-0,22	
10	26	18	11	2004	229,62	31596	526,60	-0,22	
10	49	19	11	2004	229,61	33059	550,98	-0,22	
12	49	20	11	2004	229,61	34619	576,98	-0,22	
13	17	21	11	2004	229,61	36087	601,45	-0,22	
11	26	22	11	2004	229,61	37416	623,60	-0,22	
11	18	23	11	2004	229.61	38848	647.47	-0.22	

Quadro A2.59 Resultados do ensaio de evaporação do provete IMC 9.2.

Figura A2.59 Ensaio de evaporação do provete IMC 9.2.

			PF	PROVETE IMC 9.3					
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	52	27	10	2004	233,17	0	0,00	0,00	
12	8	27	10	2004	233,13	16	0,27	0,00	
13	41	27	10	2004	233,06	109	1,82	-0,01	
14	28	27	10	2004	233,01	156	2,60	-0,01	
16	43	27	10	2004	232,92	291	4,85	-0,02	
19	6	27	10	2004	232,80	434	7,23	-0,02	
1	8	28	10	2004	232,55	796	13,27	-0,04	
8	5	28	10	2004	232,26	1213	20,22	-0,06	
13	23	28	10	2004	232,04	1531	25,52	-0,07	
19	53	28	10	2004	231,76	1921	32,02	-0,09	
8	45	29	10	2004	231,33	2693	44,88	-0,12	
14	21	29	10	2004	231,13	3029	50,48	-0,13	
16	49	29	10	2004	231,04	3177	52,95	-0,14	
23	37	29	10	2004	230,92	3585	59,75	-0,15	
11	25	30	10	2004	230,79	4293	71,55	-0,16	
20	9	30	10	2004	230,69	4817	80,28	-0,16	
10	4	31	10	2004	230,59	5652	94,20	-0,17	
16	30	31	10	2004	230,56	6038	100,63	-0,17	
12	15	1	11	2004	230,45	7223	120,38	-0,18	
20	16	1	11	2004	230,42	7704	128,40	-0,18	
9	35	2	11	2004	230,36	8503	141,72	-0,18	
13	39	2	11	2004	230,35	8747	145,78	-0,19	
22	14	2	11	2004	230,29	9262	154,37	-0,19	
10	39	3	11	2004	230,27	10007	166,78	-0,19	
15	5	3	11	2004	230,25	10273	171,22	-0,19	
18	49	3	11	2004	230,23	10497	174,95	-0,19	
12	34	4	11	2004	230,18	11562	192,70	-0,20	
20	4	4	11	2004	230,16	12012	200,20	-0,20	
11	0	5	11	2004	230,11	12908	215,13	-0,20	
18	51	5	11	2004	230,09	13379	222,98	-0,20	
9	39	6	11	2004	230,06	14267	237,78	-0,20	
1	31	7	11	2004	230,04	15219	253,65	-0,21	
20	3	7	11	2004	230,00	16331	272,18	-0,21	
9	21	8	11	2004	230,00	17129	285,48	-0,21	
20	53	8	11	2004	229,98	17821	297,02	-0,21	
13	24	9	11	2004	229,97	18812	313,53	-0,21	
10	9	10	11	2004	229,96	20057	334,28	-0,21	
19	2	10	11	2004	229,96	20590	343,17	-0,21	
9	38	11	11	2004	229,95	21466	357,77	-0,21	
18	9	11	11	2004	229,95	21977	366,28	-0,21	
12	34	12	11	2004	229,94	23082	384,70	-0,21	
12	10	13	11	2004	229,93	24498	408,30	-0,21	
20	17	14	11	2004	229,93	26425	440,42	-0,21	
12	40	15	11	2004	229,93	27408	456,80	-0,21	
12	53	16	11	2004	229,93	28861	481,02	-0,21	
10	20	17	11	2004	229,93	30148	502,47	-0,21	
10	26	18	11	2004	229,93	31594	526,57	-0,21	
10	49	19	11	2004	229,93	33057	550,95	-0,21	
12	49	20	11	2004	229,93	34617	576,95	-0,21	
13	17	21	11	2004	229,93	36085	601,42	-0,21	
11	26	22	11	2004	229,93	37414	623,57	-0,21	
11	18	23	11	2004	229.93	38846	647.43	-0.21	

Quadro A2.60 Resultados do ensaio de evaporação do provete IMC 9.3.

Figura A2.60 Ensaio de evaporação do provete IMC 9.3.

	PROVET	E IMC	1.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	26	30	5	2005	221,21	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	31	30	5	2005	221,40	0,20	5	0,2887	0,0123	0,2887	0,0123	0,20
12	23	30	5	2005	221,49	0,20	57	0,9747	0,0181	0,9747	0,0181	0,20
15	3	30	5	2005	221,58	0,20	217	1,9018	0,0239	1,9018	0,0239	0,20
18	30	30	5	2005	221,64	0,20	424	2,6583	0,0278	2,6583	0,0278	0,20
20	0	30	5	2005	221,66	0,20	514	2,9269	0,0291	2,9269	0,0291	0,20
9	28	31	5	2005	221,81	0,20	1322	4,6940	0,0388	4,6940	0,0388	0,20
15	27	31	5	2005	221,91	0,20	1681	5,2931	0,0452	5,2931	0,0452	0,20
9	49	1	6	2005	222,01	0,20	2783	6,8105	0,0517	6,8105	0,0517	0,20
17	55	1	6	2005	222,01	0,20	3269	7,3813	0,0517	7,3813	0,0517	0,20
8	32	2	6	2005	222,12	0,20	4146	8,3126	0,0588	8,3126	0,0588	0,20
19	52	2	6	2005	222,14	0,20	4826	8,9685	0,0601	8,9685	0,0601	0,20
8	34	3	6	2005	222,24	0,20	5588	9,6506	0,0665	9,6506	0,0665	0,20
19	24	3	6	2005	222,24	0,20	6238	10,1964	0,0665	10,1964	0,0665	0,20
9	56	4	6	2005	222,26	0,20	7110	10,8858	0,0678	10,8858	0,0678	0,20
11	50	5	6	2005	222,34	0,20	8664	12,0167	0,0730	12,0167	0,0730	0,20
20	17	5	6	2005	222,34	0,20	9171	12,3633	0,0730	12,3633	0,0730	0,20
12	20	6	6	2005	222,36	0,20	10134	12,9962	0,0743	12,9962	0,0743	0,20
20	8	7	6	2005	222,36	0,20	12042	14,1669	0,0743	14,1669	0,0743	0,20

Quadro A2.61 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.1T, após tratamento.

SECÇÃO - 15,4830 cm2 ALTURA - 5,97 cm POROSIDADE LIVRE - 6,05%

Figura A2.61 Ensaio de absorção de água por capilaridade do provete IMC 1.1T, após tratamento.

	PROVET	E IMC	1.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	36	30	5	2005	220,86	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	39	30	5	2005	221,04	0,20	3	0,2236	0,0116	0,2236	0,0116	0,20
12	26	30	5	2005	221,11	0,20	50	0,9129	0,0161	0,9129	0,0161	0,20
15	8	30	5	2005	221,20	0,20	212	1,8797	0,0220	1,8797	0,0220	0,20
18	35	30	5	2005	221,26	0,20	419	2,6426	0,0258	2,6426	0,0258	0,20
20	4	30	5	2005	221,29	0,20	508	2,9098	0,0278	2,9098	0,0278	0,20
9	32	31	5	2005	221,46	0,20	1316	4,6833	0,0388	4,6833	0,0388	0,20
15	31	31	5	2005	221,49	0,20	1675	5,2836	0,0407	5,2836	0,0407	0,20
9	54	1	6	2005	221,60	0,20	2778	6,8044	0,0478	6,8044	0,0478	0,20
17	59	1	6	2005	221,64	0,20	3263	7,3745	0,0504	7,3745	0,0504	0,20
8	36	2	6	2005	221,73	0,20	4140	8,3066	0,0562	8,3066	0,0562	0,20
19	55	2	6	2005	221,77	0,20	4819	8,9620	0,0588	8,9620	0,0588	0,20
8	39	3	6	2005	221,86	0,20	5583	9,6462	0,0646	9,6462	0,0646	0,20
19	27	3	6	2005	221,87	0,20	6231	10,1907	0,0652	10,1907	0,0652	0,20
10	0	4	6	2005	221,98	0,20	7104	10,8812	0,0723	10,8812	0,0723	0,20
11	53	5	6	2005	222,02	0,20	8657	12,0118	0,0749	12,0118	0,0749	0,20
20	19	5	6	2005	222,07	0,20	9163	12,3579	0,0782	12,3579	0,0782	0,20
12	22	6	6	2005	222,07	0,20	10126	12,9910	0,0782	12,9910	0,0782	0,20
20	13	7	6	2005	222,07	0,20	12037	14,1639	0,0782	14,1639	0,0782	0,20

Quadro A2.62 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,03 cm POROSIDADE LIVRE - 6,41%

Figura A2.62 Ensaio de absorção de água por capilaridade do provete IMC 1.2T, após tratamento.

	PROVE	ге імс	1.3T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	36	30	5	2005	218,40	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	39	30	5	2005	218,59	0,20	3	0,2236	0,0123	0,2236	0,0123	0,20
12	26	30	5	2005	218,68	0,20	50	0,9129	0,0181	0,9129	0,0181	0,20
15	8	30	5	2005	218,76	0,20	212	1,8797	0,0233	1,8797	0,0233	0,20
18	36	30	5	2005	218,82	0,20	420	2,6458	0,0271	2,6458	0,0271	0,20
20	5	30	5	2005	218,87	0,20	509	2,9126	0,0304	2,9126	0,0304	0,20
9	32	31	5	2005	219,05	0,20	1316	4,6833	0,0420	4,6833	0,0420	0,20
15	32	31	5	2005	219,13	0,20	1676	5,2852	0,0471	5,2852	0,0471	0,20
9	54	1	6	2005	219,20	0,20	2778	6,8044	0,0517	6,8044	0,0517	0,20
17	59	1	6	2005	219,22	0,20	3263	7,3745	0,0530	7,3745	0,0530	0,20
8	37	2	6	2005	219,30	0,20	4141	8,3076	0,0581	8,3076	0,0581	0,20
19	56	2	6	2005	219,38	0,20	4820	8,9629	0,0633	8,9629	0,0633	0,20
8	39	3	6	2005	219,46	0,20	5583	9,6462	0,0685	9,6462	0,0685	0,20
19	28	3	6	2005	219,47	0,20	6232	10,1915	0,0691	10,1915	0,0691	0,20
10	0	4	6	2005	219,55	0,20	7104	10,8812	0,0743	10,8812	0,0743	0,20
11	53	5	6	2005	219,59	0,20	8657	12,0118	0,0769	12,0118	0,0769	0,20
20	19	5	6	2005	219,60	0,20	9163	12,3579	0,0775	12,3579	0,0775	0,20
12	22	6	6	2005	219,60	0,20	10126	12,9910	0,0775	12,9910	0,0775	0,20
20	13	7	6	2005	219,64	0,20	12037	14,1639	0,0801	14,1639	0,0801	0,20

Quadro A2.63 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.3T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 6,78%

Figura A2.63 Ensaio de absorção de água por capilaridade do provete IMC 1.3T, após tratamento.

	PROVE	ге імс	1.4T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	27	30	5	2005	198,50	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	32	30	5	2005	198,73	0,20	5	0,2887	0,0149	0,2887	0,0149	0,20
12	24	30	5	2005	198,77	0,20	57	0,9747	0,0174	0,9747	0,0174	0,20
15	3	30	5	2005	198,82	0,20	216	1,8974	0,0207	1,8974	0,0207	0,20
18	31	30	5	2005	198,89	0,20	424	2,6583	0,0252	2,6583	0,0252	0,20
20	1	30	5	2005	198,93	0,20	514	2,9269	0,0278	2,9269	0,0278	0,20
9	29	31	5	2005	199,08	0,20	1322	4,6940	0,0375	4,6940	0,0375	0,20
15	28	31	5	2005	199,14	0,20	1681	5,2931	0,0413	5,2931	0,0413	0,20
9	49	1	6	2005	199,23	0,20	2782	6,8093	0,0471	6,8093	0,0471	0,20
17	56	1	6	2005	199,24	0,20	3269	7,3813	0,0478	7,3813	0,0478	0,20
8	33	2	6	2005	199,33	0,20	4146	8,3126	0,0536	8,3126	0,0536	0,20
19	52	2	6	2005	199,41	0,20	4825	8,9675	0,0588	8,9675	0,0588	0,20
8	34	3	6	2005	199,44	0,20	5587	9,6497	0,0607	9,6497	0,0607	0,20
19	24	3	6	2005	199,50	0,20	6237	10,1956	0,0646	10,1956	0,0646	0,20
9	57	4	6	2005	199,53	0,20	7110	10,8858	0,0665	10,8858	0,0665	0,20
11	50	5	6	2005	199,53	0,20	8663	12,0160	0,0665	12,0160	0,0665	0,20
20	17	5	6	2005	199,53	0,20	9170	12,3626	0,0665	12,3626	0,0665	0,20
12	20	6	6	2005	199,62	0,20	10133	12,9955	0,0723	12,9955	0,0723	0,20
20	8	7	6	2005	199,64	0,20	12041	14,1663	0,0736	14,1663	0,0736	0,20

Quadro A2.64 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.4T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,50 cm POROSIDADE LIVRE - 7,26%

Figura A2.64 Ensaio de absorção de água por capilaridade do provete IMC 1.4T, após tratamento.

	PROVET	EIMC	2.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	30	5	2005	214,45	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	33	30	5	2005	214,69	0,20	5	0,2887	0,0155	0,2887	0,0155	0,20
12	24	30	5	2005	214,76	0,20	56	0,9661	0,0200	0,9661	0,0200	0,20
15	3	30	5	2005	214,88	0,20	215	1,8930	0,0278	1,8930	0,0278	0,20
18	32	30	5	2005	214,94	0,20	424	2,6583	0,0316	2,6583	0,0316	0,20
20	2	30	5	2005	215,00	0,20	514	2,9269	0,0355	2,9269	0,0355	0,20
9	29	31	5	2005	215,23	0,20	1321	4,6922	0,0504	4,6922	0,0504	0,20
15	28	31	5	2005	215,25	0,20	1680	5,2915	0,0517	5,2915	0,0517	0,20
9	49	1	6	2005	215,45	0,20	2781	6,8081	0,0646	6,8081	0,0646	0,20
17	56	1	6	2005	215,45	0,20	3268	7,3802	0,0646	7,3802	0,0646	0,20
8	33	2	6	2005	215,50	0,20	4145	8,3116	0,0678	8,3116	0,0678	0,20
19	53	2	6	2005	215,58	0,20	4825	8,9675	0,0730	8,9675	0,0730	0,20
8	35	3	6	2005	215,65	0,20	5587	9,6497	0,0775	9,6497	0,0775	0,20
19	25	3	6	2005	215,68	0,20	6237	10,1956	0,0794	10,1956	0,0794	0,20
9	57	4	6	2005	215,71	0,20	7109	10,8850	0,0814	10,8850	0,0814	0,20
11	50	5	6	2005	215,78	0,20	8662	12,0153	0,0859	12,0153	0,0859	0,20
20	17	5	6	2005	215,78	0,20	9169	12,3619	0,0859	12,3619	0,0859	0,20
12	20	6	6	2005	215,81	0,20	10132	12,9949	0,0878	12,9949	0,0878	0,20
20	8	7	6	2005	215,93	0,20	12040	14,1657	0,0956	14,1657	0,0956	0,20

Quadro A2.65 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.1T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 8,01%

Figura A2.65 Ensaio de absorção de água por capilaridade do provete IMC 2.1T, após tratamento.

	PROVET	E IMC	2.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	37	30	5	2005	211,38	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	40	30	5	2005	211,60	0,20	3	0,2236	0,0142	0,2236	0,0142	0,20
12	27	30	5	2005	211,67	0,20	50	0,9129	0,0187	0,9129	0,0187	0,20
15	8	30	5	2005	211,80	0,20	211	1,8753	0,0271	1,8753	0,0271	0,20
18	37	30	5	2005	211,87	0,20	420	2,6458	0,0316	2,6458	0,0316	0,20
20	6	30	5	2005	211,91	0,20	509	2,9126	0,0342	2,9126	0,0342	0,20
9	33	31	5	2005	212,14	0,20	1316	4,6833	0,0491	4,6833	0,0491	0,20
15	32	31	5	2005	212,16	0,20	1675	5,2836	0,0504	5,2836	0,0504	0,20
9	54	1	6	2005	212,29	0,20	2777	6,8032	0,0588	6,8032	0,0588	0,20
18	0	1	6	2005	212,31	0,20	3263	7,3745	0,0601	7,3745	0,0601	0,20
8	37	2	6	2005	212,44	0,20	4140	8,3066	0,0685	8,3066	0,0685	0,20
19	56	2	6	2005	212,51	0,20	4819	8,9620	0,0730	8,9620	0,0730	0,20
8	40	3	6	2005	212,59	0,20	5583	9,6462	0,0782	9,6462	0,0782	0,20
19	28	3	6	2005	212,61	0,20	6231	10,1907	0,0794	10,1907	0,0794	0,20
10	1	4	6	2005	212,69	0,20	7104	10,8812	0,0846	10,8812	0,0846	0,20
11	53	5	6	2005	212,81	0,20	8656	12,0111	0,0924	12,0111	0,0924	0,20
20	19	5	6	2005	212,81	0,20	9162	12,3572	0,0924	12,3572	0,0924	0,20
12	22	6	6	2005	212,81	0,20	10125	12,9904	0,0924	12,9904	0,0924	0,20
20	13	7	6	2005	212,82	0,20	12036	14,1633	0,0930	14,1633	0,0930	0,20

Quadro A2.66 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 8,78%

Figura A2.66 Ensaio de absorção de água por capilaridade do provete IMC 2.2T, após tratamento.

	PROVET	E IMC 2	2.3T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)					
11	52	30	5	2005	212,97	0,20	0	0,0000	0,0000	0,0000	0,20
11	55	30	5	2005	213,52	0,60	3	0,2236	0,0355	0,2236	0,60
12	4	30	5	2005	213,72	0,65	12	0,4472	0,0484	0,4472	0,65
13	4	30	5	2005	214,85		72	1,0954	0,1214	1,8439	4,30
15	16	30	5	2005	217,72	4,30	204	1,8439	0,3068	2,0125	4,40
15	55	30	5	2005	217,94	4,40	243	2,0125	0,3210	2,6394	5,00
18	50	30	5	2005	219,14	5,00	418	2,6394	0,3985	2,8983	6,00
20	16	30	5	2005	220,51	6,00	504	2,8983	0,4870	4,6797	
9	46	31	5	2005	221,17		1314	4,6797	0,5296	5,2742	
15	41	31	5	2005	221,22		1669	5,2742	0,5328	6,7922	
10	0	1	6	2005	221,54		2768	6,7922	0,5535	7,3655	
18	7	1	6	2005	221,69		3255	7,3655	0,5632	8,3006	
8	46	2	6	2005	221,91		4134	8,3006	0,5774	8,9554	
20	4	2	6	2005	221,98		4812	8,9554	0,5819	9,6402	
8	48	3	6	2005	222,07		5576	9,6402	0,5877	10,1850	
19	36	3	6	2005	222,09		6224	10,1850	0,5890	10,8796	
10	14	4	6	2005	222,11		7102	10,8796	0,5903	12,0035	
11	57	5	6	2005	222,17		8645	12,0035	0,5942	12,3498	
20	23	5	6	2005	222,22		9151	12,3498	0,5974	12,9833	
12	26	6	6	2005	222,22		10114	12,9833	0,5974	14,1574	
20	18	7	6	2005	222,28		12026	14,1574	0,6013		

Quadro A2.67 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.3T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 8,99%

Figura A2.67 Ensaio de absorção de água por capilaridade do provete IMC 2.3T, após tratamento.

	PROVETI	E IMC 2	2.4T		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	42	30	5	2005	210,47	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	44	30	5	2005	212,35	1,55	2	0,1826	0,1214	0,1826	0,1214	1,55
11	49	30	5	2005	213,16	1,95	7	0,3416	0,1737	0,3416	0,1737	1,95
11	58	30	5	2005	214,30	3,00	16	0,5164	0,2474	0,5164	0,2474	3,00
12	6	30	5	2005	215,03	4,00	24	0,6325	0,2945	0,6325	0,2945	4,00
12	14	30	5	2005	215,67	4,30	32	0,7303	0,3359	0,7303	0,3359	4,30
12	28	30	5	2005	216,50	5,35	46	0,8756	0,3895	0,8756	0,3895	5,35
15	12	30	5	2005	217,86		210	1,8708	0,4773	1,8708	0,4773	
15	45	30	5	2005	217,95		243	2,0125	0,4831	2,0125	0,4831	
18	41	30	5	2005	218,04		419	2,6426	0,4889	2,6426	0,4889	
20	9	30	5	2005	218,13		507	2,9069	0,4947	2,9069	0,4947	
20	23	30	5	2005	218,14		521	2,9467	0,4954	2,9467	0,4954	
9	36	31	5	2005	218,33		1314	4,6797	0,5077	4,6797	0,5077	
15	35	31	5	2005	218,40		1673	5,2805	0,5122	5,2805	0,5122	
9	57	1	6	2005	218,94		2775	6,8007	0,5471	6,8007	0,5471	
18	2	1	6	2005	219,07		3260	7,3711	0,5554	7,3711	0,5554	
8	40	2	6	2005	219,25		4138	8,3046	0,5671	8,3046	0,5671	
19	59	2	6	2005	219,35		4817	8,9601	0,5735	8,9601	0,5735	
8	42	3	6	2005	219,45		5580	9,6437	0,5800	9,6437	0,5800	
19	31	3	6	2005	219,49		6229	10,1890	0,5826	10,1890	0,5826	
10	3	4	6	2005	219,52		7101	10,8789	0,5845	10,8789	0,5845	
11	55	5	6	2005	219,64		8653	12,0090	0,5923	12,0090	0,5923	l
20	21	5	6	2005	219,62		9159	12,3552	0,5910	12,3552	0,5910	l
12	24	6	6	2005	219,64		10122	12,9885	0,5923	12,9885	0,5923	l
20	15	7	6	2005	219,64		12033	14,1616	0,5923	14,161568	0,5923	ĺ

Quadro A2.68 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.4T, após tratamento.

Figura A2.68 Ensaio de absorção de água por capilaridade do provete IMC 2.4T, após tratamento.

	PROVE	ге імс	3.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	52	30	5	2005	226,25	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	56	30	5	2005	227,01	0,55	4	0,2582	0,0491	0,2582	0,0491	0,55
12	4	30	5	2005	227,50	0,70	12	0,4472	0,0807	0,4472	0,0807	0,70
13	5	30	5	2005	229,41	4,50	73	1,1030	0,2041	1,1030	0,2041	4,50
15	16	30	5	2005	231,20	5,97	204	1,8439	0,3197	1,8439	0,3197	5,97
15	56	30	5	2005	231,19		244	2,0166	0,3191	2,0166	0,3191	
18	51	30	5	2005	231,19		419	2,6426	0,3191	2,6426	0,3191	
20	17	30	5	2005	231,24		505	2,9011	0,3223	2,9011	0,3223	
9	46	31	5	2005	231,34		1314	4,6797	0,3287	4,6797	0,3287	
15	41	31	5	2005	231,35		1669	5,2742	0,3294	5,2742	0,3294	
10	0	1	6	2005	231,52		2768	6,7922	0,3404	6,7922	0,3404	
18	9	1	6	2005	231,55		3257	7,3677	0,3423	7,3677	0,3423	
8	47	2	6	2005	231,71		4135	8,3016	0,3526	8,3016	0,3526	
20	4	2	6	2005	231,75		4812	8,9554	0,3552	8,9554	0,3552	
8	48	3	6	2005	231,83		5576	9,6402	0,3604	9,6402	0,3604	
19	36	3	6	2005	231,82		6224	10,1850	0,3597	10,1850	0,3597	
10	14	4	6	2005	231,86		7102	10,8796	0,3623	10,8796	0,3623	
11	57	5	6	2005	231,90		8645	12,0035	0,3649	12,0035	0,3649	
20	23	5	6	2005	231,91		9151	12,3498	0,3656	12,3498	0,3656	
12	26	6	6	2005	231,88		10114	12,9833	0,3636	12,9833	0,3636	
20	18	7	6	2005	231,96		12026	14,1574	0,3688	14,1574	0,3688	

Quadro A2.69 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.1T, após tratamento.

Figura A2.69 Ensaio de absorção de água por capilaridade do provete IMC 3.1T, após tratamento.

	PROVE	ге імс	3.2T		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	42	30	5	2005	227,18	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	45	30	5	2005	228,25	1,25	3	0,2236	0,0691	0,2236	0,0691	1,25
11	50	30	5	2005	228,72	1,80	8	0,3651	0,0995	0,3651	0,0995	1,80
11	58	30	5	2005	229,35	2,90	16	0,5164	0,1402	0,5164	0,1402	2,90
12	7	30	5	2005	229,95	3,50	25	0,6455	0,1789	0,6455	0,1789	3,50
12	15	30	5	2005	230,50	4,25	33	0,7416	0,2144	0,7416	0,2144	4,25
12	29	30	5	2005	231,27	5,15	47	0,8851	0,2642	0,8851	0,2642	5,15
12	42	30	5	2005	231,89	6,03	60	1,0000	0,3042	1,0000	0,3042	6,03
15	12	30	5	2005	232,27		210	1,8708	0,3287	1,8708	0,3287	
15	46	30	5	2005	232,30		244	2,0166	0,3307	2,0166	0,3307	
18	42	30	5	2005	232,31		420	2,6458	0,3313	2,6458	0,3313	
20	10	30	5	2005	232,35		508	2,9098	0,3339	2,9098	0,3339	
9	38	31	5	2005	232,44		1316	4,6833	0,3397	4,6833	0,3397	
15	35	31	5	2005	232,47		1673	5,2805	0,3417	5,2805	0,3417	
9	57	1	6	2005	232,68		2775	6,8007	0,3552	6,8007	0,3552	
18	3	1	6	2005	232,70		3261	7,3722	0,3565	7,3722	0,3565	
8	42	2	6	2005	232,81		4140	8,3066	0,3636	8,3066	0,3636	
19	59	2	6	2005	232,85		4817	8,9601	0,3662	8,9601	0,3662	
8	43	3	6	2005	232,96		5581	9,6445	0,3733	9,6445	0,3733	
19	31	3	6	2005	232,98		6229	10,1890	0,3746	10,1890	0,3746	
10	4	4	6	2005	232,96		7102	10,8796	0,3733	10,8796	0,3733	
11	55	5	6	2005	233,06		8653	12,0090	0,3798	12,0090	0,3798	
20	21	5	6	2005	233,07		9159	12,3552	0,3804	12,3552	0,3804	
12	24	6	6	2005	233,07		10122	12,9885	0,3804	12,9885	0,3804	
20	15	7	6	2005	233,10		12033	14,1616	0,3824	14,1616	0,3824	

Quadro A2.70 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,03 cm POROSIDADE LIVRE - 5,91%

Figura A2.70 Ensaio de absorção de água por capilaridade do provete IMC 3.2T, após tratamento.

	PROVE	ге імс	4.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	37	30	5	2005	227,06	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	40	30	5	2005	227,24	0,20	3	0,2236	0,0116	0,2236	0,0116	0,20
12	27	30	5	2005	227,28	0,20	50	0,9129	0,0142	0,9129	0,0142	0,20
15	8	30	5	2005	227,38	0,20	211	1,8753	0,0207	1,8753	0,0207	0,20
18	38	30	5	2005	227,42	0,20	421	2,6489	0,0233	2,6489	0,0233	0,20
20	6	30	5	2005	227,46	0,20	509	2,9126	0,0258	2,9126	0,0258	0,20
9	34	31	5	2005	227,64	0,20	1317	4,6851	0,0375	4,6851	0,0375	0,20
15	33	31	5	2005	227,66	0,20	1676	5,2852	0,0388	5,2852	0,0388	0,20
9	54	1	6	2005	227,73	0,20	2777	6,8032	0,0433	6,8032	0,0433	0,20
18	1	1	6	2005	227,74	0,20	3264	7,3756	0,0439	7,3756	0,0439	0,20
8	38	2	6	2005	227,84	0,20	4141	8,3076	0,0504	8,3076	0,0504	0,20
19	57	2	6	2005	227,86	0,20	4820	8,9629	0,0517	8,9629	0,0517	0,20
8	40	3	6	2005	227,94	0,20	5583	9,6462	0,0568	9,6462	0,0568	0,20
19	29	3	6	2005	227,96	0,20	6232	10,1915	0,0581	10,1915	0,0581	0,20
10	2	4	6	2005	227,97	0,20	7105	10,8819	0,0588	10,8819	0,0588	0,20
11	53	5	6	2005	228,05	0,20	8656	12,0111	0,0639	12,0111	0,0639	0,20
20	19	5	6	2005	228,05	0,20	9162	12,3572	0,0639	12,3572	0,0639	0,20
12	22	6	6	2005	228,06	0,20	10125	12,9904	0,0646	12,9904	0,0646	0,20
20	13	7	6	2005	228,06	0,20	12036	14,1633	0,0646	14,1633	0,0646	0,20

Quadro A2.71 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.1T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,97 cm POROSIDADE LIVRE - 4,68%

Figura A2.71 Ensaio de absorção de água por capilaridade do provete IMC 4.1T, após tratamento.

	PROVE	ге імс	4.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	30	5	2005	226,52	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	33	30	5	2005	226,72	0,20	5	0,2887	0,0129	0,2887	0,0129	0,20
12	24	30	5	2005	226,78	0,20	56	0,9661	0,0168	0,9661	0,0168	0,20
15	3	30	5	2005	226,84	0,20	215	1,8930	0,0207	1,8930	0,0207	0,20
18	33	30	5	2005	226,91	0,20	425	2,6615	0,0252	2,6615	0,0252	0,20
20	2	30	5	2005	226,98	0,20	514	2,9269	0,0297	2,9269	0,0297	0,20
9	30	31	5	2005	227,13	0,20	1322	4,6940	0,0394	4,6940	0,0394	0,20
15	29	31	5	2005	227,18	0,20	1681	5,2931	0,0426	5,2931	0,0426	0,20
9	49	1	6	2005	227,27	0,20	2781	6,8081	0,0484	6,8081	0,0484	0,20
17	57	1	6	2005	227,27	0,20	3269	7,3813	0,0484	7,3813	0,0484	0,20
8	34	2	6	2005	227,36	0,20	4146	8,3126	0,0543	8,3126	0,0543	0,20
19	53	2	6	2005	227,39	0,20	4825	8,9675	0,0562	8,9675	0,0562	0,20
8	36	3	6	2005	227,45	0,20	5588	9,6506	0,0601	9,6506	0,0601	0,20
19	25	3	6	2005	227,49	0,20	6237	10,1956	0,0626	10,1956	0,0626	0,20
9	58	4	6	2005	227,51	0,20	7110	10,8858	0,0639	10,8858	0,0639	0,20
11	50	5	6	2005	227,54	0,20	8662	12,0153	0,0659	12,0153	0,0659	0,20
20	17	5	6	2005	227,56	0,20	9169	12,3619	0,0672	12,3619	0,0672	0,20
12	20	6	6	2005	227,57	0,20	10132	12,9949	0,0678	12,9949	0,0678	0,20
20	8	7	6	2005	227,57	0,20	12040	14,1657	0,0678	14,1657	0,0678	0,20

Quadro A2.72 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,97 cm POROSIDADE LIVRE - 4,67%

Figura A2.72 Ensaio de absorção de água por capilaridade do provete IMC 4.2T, após tratamento.

	PROVET	E IMC	4.3T		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO								
11	29	30	5	2005	229,10	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	34	30	5	2005	229,30	0,20	5	0,2887	0,0129	0,2887	0,0129	0,20
12	25	30	5	2005	229,35	0,20	56	0,9661	0,0161	0,9661	0,0161	0,20
15	3	30	5	2005	229,45	0,20	214	1,8886	0,0226	1,8886	0,0226	0,20
18	33	30	5	2005	229,48	0,20	424	2,6583	0,0245	2,6583	0,0245	0,20
20	3	30	5	2005	229,54	0,20	514	2,9269	0,0284	2,9269	0,0284	0,20
9	30	31	5	2005	229,71	0,20	1321	4,6922	0,0394	4,6922	0,0394	0,20
15	29	31	5	2005	229,77	0,20	1680	5,2915	0,0433	5,2915	0,0433	0,20
9	49	1	6	2005	229,85	0,20	2780	6,8069	0,0484	6,8069	0,0484	0,20
17	58	1	6	2005	229,87	0,20	3269	7,3813	0,0497	7,3813	0,0497	0,20
8	35	2	6	2005	229,94	0,20	4146	8,3126	0,0543	8,3126	0,0543	0,20
19	54	2	6	2005	229,99	0,20	4825	8,9675	0,0575	8,9675	0,0575	0,20
8	37	3	6	2005	230,04	0,20	5588	9,6506	0,0607	9,6506	0,0607	0,20
19	26	3	6	2005	230,10	0,20	6237	10,1956	0,0646	10,1956	0,0646	0,20
9	58	4	6	2005	230,10	0,20	7109	10,8850	0,0646	10,8850	0,0646	0,20
11	50	5	6	2005	230,16	0,20	8661	12,0146	0,0685	12,0146	0,0685	0,20
20	17	5	6	2005	230,16	0,20	9168	12,3612	0,0685	12,3612	0,0685	0,20
12	20	6	6	2005	230,18	0,20	10131	12,9942	0,0698	12,9942	0,0698	0,20
20	8	7	6	2005	230,22	0,20	12039	14,1651	0,0723	14,1651	0,0723	0,20

Quadro A2.73 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.3T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,01 cm POROSIDADE LIVRE - 4,59%

Figura A2.73 Ensaio de absorção de água por capilaridade do provete IMC 4.3T, após tratamento.

	PROVE	ге імс	4.4T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO								
11	37	30	5	2005	229,73	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	40	30	5	2005	229,90	0,20	3	0,2236	0,0110	0,2236	0,0110	0,20
12	27	30	5	2005	229,96	0,20	50	0,9129	0,0149	0,9129	0,0149	0,20
15	8	30	5	2005	230,02	0,20	211	1,8753	0,0187	1,8753	0,0187	0,20
18	39	30	5	2005	230,08	0,20	422	2,6520	0,0226	2,6520	0,0226	0,20
20	7	30	5	2005	230,12	0,20	510	2,9155	0,0252	2,9155	0,0252	0,20
9	35	31	5	2005	230,28	0,20	1318	4,6869	0,0355	4,6869	0,0355	0,20
15	33	31	5	2005	230,29	0,20	1676	5,2852	0,0362	5,2852	0,0362	0,20
9	54	1	6	2005	230,40	0,20	2777	6,8032	0,0433	6,8032	0,0433	0,20
18	1	1	6	2005	230,43	0,20	3264	7,3756	0,0452	7,3756	0,0452	0,20
8	38	2	6	2005	230,49	0,20	4141	8,3076	0,0491	8,3076	0,0491	0,20
19	58	2	6	2005	230,55	0,20	4821	8,9638	0,0530	8,9638	0,0530	0,20
8	41	3	6	2005	230,62	0,20	5584	9,6471	0,0575	9,6471	0,0575	0,20
19	29	3	6	2005	230,65	0,20	6232	10,1915	0,0594	10,1915	0,0594	0,20
10	2	4	6	2005	230,65	0,20	7105	10,8819	0,0594	10,8819	0,0594	0,20
11	53	5	6	2005	230,73	0,20	8656	12,0111	0,0646	12,0111	0,0646	0,20
20	19	5	6	2005	230,74	0,20	9162	12,3572	0,0652	12,3572	0,0652	0,20
12	22	6	6	2005	230,77	0,20	10125	12,9904	0,0672	12,9904	0,0672	0,20
20	13	7	6	2005	230,82	0,20	12036	14,1633	0,0704	14,1633	0,0704	0,20

Quadro A2.74 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.4T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,02 cm POROSIDADE LIVRE - 4,43%

Figura A2.74 Ensaio de absorção de água por capilaridade do provete IMC 4.4T, após tratamento.

	PROVE	ге імс	5.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	38	30	5	2005	227,97	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	41	30	5	2005	228,19	0,20	3	0,2236	0,0142	0,2236	0,0142	0,20
12	28	30	5	2005	228,24	0,20	50	0,9129	0,0174	0,9129	0,0174	0,20
15	8	30	5	2005	228,34	0,20	210	1,8708	0,0239	1,8708	0,0239	0,20
18	39	30	5	2005	228,39	0,20	421	2,6489	0,0271	2,6489	0,0271	0,20
20	7	30	5	2005	228,42	0,20	509	2,9126	0,0291	2,9126	0,0291	0,20
9	35	31	5	2005	228,60	0,20	1317	4,6851	0,0407	4,6851	0,0407	0,20
15	34	31	5	2005	228,66	0,20	1676	5,2852	0,0446	5,2852	0,0446	0,20
9	54	1	6	2005	228,76	0,20	2776	6,8020	0,0510	6,8020	0,0510	0,20
18	2	1	6	2005	228,78	0,20	3264	7,3756	0,0523	7,3756	0,0523	0,20
8	39	2	6	2005	228,88	0,20	4141	8,3076	0,0588	8,3076	0,0588	0,20
19	58	2	6	2005	228,93	0,20	4820	8,9629	0,0620	8,9629	0,0620	0,20
8	41	3	6	2005	229,01	0,20	5583	9,6462	0,0672	9,6462	0,0672	0,20
19	30	3	6	2005	229,04	0,20	6232	10,1915	0,0691	10,1915	0,0691	0,20
10	3	4	6	2005	229,04	0,20	7105	10,8819	0,0691	10,8819	0,0691	0,20
11	53	5	6	2005	229,14	0,20	8655	12,0104	0,0756	12,0104	0,0756	0,20
20	19	5	6	2005	229,14	0,20	9161	12,3565	0,0756	12,3565	0,0756	0,20
12	22	6	6	2005	229,15	0,20	10124	12,9897	0,0762	12,9897	0,0762	0,20
20	13	7	6	2005	229,15	0,20	12035	14,1627	0,0762	14,1627	0,0762	0,20

Quadro A2.75 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.1T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 4,88%

Figura A2.75 Ensaio de absorção de água por capilaridade do provete IMC 5.1T, após tratamento.

	PROVET	ге імс	5.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	29	30	5	2005	226,26	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	34	30	5	2005	226,49	0,20	5	0,2887	0,0149	0,2887	0,0149	0,20
12	25	30	5	2005	226,56	0,20	56	0,9661	0,0194	0,9661	0,0194	0,20
15	3	30	5	2005	226,65	0,20	214	1,8886	0,0252	1,8886	0,0252	0,20
18	34	30	5	2005	226,69	0,20	425	2,6615	0,0278	2,6615	0,0278	0,20
20	4	30	5	2005	226,75	0,20	515	2,9297	0,0316	2,9297	0,0316	0,20
9	31	31	5	2005	226,93	0,20	1322	4,6940	0,0433	4,6940	0,0433	0,20
15	30	31	5	2005	226,98	0,20	1681	5,2931	0,0465	5,2931	0,0465	0,20
9	49	1	6	2005	227,10	0,20	2780	6,8069	0,0543	6,8069	0,0543	0,20
17	58	1	6	2005	227,11	0,20	3269	7,3813	0,0549	7,3813	0,0549	0,20
8	35	2	6	2005	227,19	0,20	4146	8,3126	0,0601	8,3126	0,0601	0,20
19	55	2	6	2005	227,23	0,20	4826	8,9685	0,0626	8,9685	0,0626	0,20
8	38	3	6	2005	227,31	0,20	5589	9,6514	0,0678	9,6514	0,0678	0,20
19	26	3	6	2005	227,33	0,20	6237	10,1956	0,0691	10,1956	0,0691	0,20
9	59	4	6	2005	227,38	0,20	7110	10,8858	0,0723	10,8858	0,0723	0,20
11	50	5	6	2005	227,41	0,20	8661	12,0146	0,0743	12,0146	0,0743	0,20
20	17	5	6	2005	227,41	0,20	9168	12,3612	0,0743	12,3612	0,0743	0,20
12	20	6	6	2005	227,45	0,20	10131	12,9942	0,0769	12,9942	0,0769	0,20
20	8	7	6	2005	227,49	0,20	12039	14,1651	0,0794	14,1651	0,0794	0,20

Quadro A2.76 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,98 cm POROSIDADE LIVRE - 5,09%

Figura A2.76 Ensaio de absorção de água por capilaridade do provete IMC 5.2T, após tratamento.

1								1 /0		1/0		
PROVETE IMC 5.3T				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA	
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	53	30	5	2005	226,47	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	56	30	5	2005	226,94	0,40	3	0,2236	0,0304	0,2236	0,0304	0,40
12	5	30	5	2005	227,34	0,45	12	0,4472	0,0562	0,4472	0,0562	0,45
13	6	30	5	2005	229,02	3,80	73	1,1030	0,1647	1,1030	0,1647	3,80
15	16	30	5	2005	231,50	6,01	203	1,8394	0,3249	1,8394	0,3249	6,01
15	56	30	5	2005	231,51		243	2,0125	0,3255	2,0125	0,3255	
18	52	30	5	2005	231,53		419	2,6426	0,3268	2,6426	0,3268	
20	18	30	5	2005	231,58		505	2,9011	0,3300	2,9011	0,3300	
9	47	31	5	2005	231,64		1314	4,6797	0,3339	4,6797	0,3339	
15	44	31	5	2005	231,65		1671	5,2773	0,3346	5,2773	0,3346	
10	0	1	6	2005	231,73		2767	6,7909	0,3397	6,7909	0,3397	
18	9	1	6	2005	231,74		3256	7,3666	0,3404	7,3666	0,3404	
8	47	2	6	2005	231,87		4134	8,3006	0,3488	8,3006	0,3488	
20	5	2	6	2005	231,96		4812	8,9554	0,3546	8,9554	0,3546	
8	49	3	6	2005	232,02		5576	9,6402	0,3585	9,6402	0,3585	
19	37	3	6	2005	232,05		6224	10,1850	0,3604	10,1850	0,3604	
10	14	4	6	2005	232,12		7101	10,8789	0,3649	10,8789	0,3649	
11	57	5	6	2005	232,14		8644	12,0028	0,3662	12,0028	0,3662	
20	23	5	6	2005	232,14		9150	12,3491	0,3662	12,3491	0,3662	
12	26	6	6	2005	232,18		10113	12,9827	0,3688	12,9827	0,3688	
20	18	7	6	2005	232,19		12025	14,1569	0,3694	14,1569	0,3694	

Quadro A2.77 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.3T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,01 cm POROSIDADE LIVRE - 5,72%

Figura A2.77 Ensaio de absorção de água por capilaridade do provete IMC 5.3T, após tratamento.

PROVETE IMC 5.4T				PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA-1/2	dW/S	ALTURA	
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	42	30	5	2005	225,31	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	46	30	5	2005	226,43	0,80	4	0,2582	0,0723	0,2582	0,0723	0,80
11	59	30	5	2005	227,61	2,20	17	0,5323	0,1486	0,5323	0,1486	2,20
12	16	30	5	2005	228,96	3,25	34	0,7528	0,2357	0,7528	0,2357	3,25
12	30	30	5	2005	230,05	5,98	48	0,8944	0,3061	0,8944	0,3061	5,98
12	43	30	5	2005	230,24		61	1,0083	0,3184	1,0083	0,3184	
15	12	30	5	2005	230,35		210	1,8708	0,3255	1,8708	0,3255	
15	48	30	5	2005	230,36		246	2,0248	0,3262	2,0248	0,3262	
18	43	30	5	2005	230,36		421	2,6489	0,3262	2,6489	0,3262	
20	11	30	5	2005	230,40		509	2,9126	0,3287	2,9126	0,3287	
9	39	31	5	2005	230,46		1317	4,6851	0,3326	4,6851	0,3326	
15	36	31	5	2005	230,48		1674	5,2820	0,3339	5,2820	0,3339	
9	57	1	6	2005	230,63		2775	6,8007	0,3436	6,8007	0,3436	
18	3	1	6	2005	230,68		3261	7,3722	0,3468	7,3722	0,3468	
8	42	2	6	2005	230,81		4140	8,3066	0,3552	8,3066	0,3552	
20	0	2	6	2005	230,85		4818	8,9610	0,3578	8,9610	0,3578	
8	43	3	6	2005	230,93		5581	9,6445	0,3630	9,6445	0,3630	
19	32	3	6	2005	230,95		6230	10,1899	0,3643	10,1899	0,3643	
10	4	4	6	2005	230,96		7102	10,8796	0,3649	10,8796	0,3649	
11	55	5	6	2005	231,06		8653	12,0090	0,3714	12,0090	0,3714	
20	21	5	6	2005	231,06		9159	12,3552	0,3714	12,3552	0,3714	
12	24	6	6	2005	231,06		10122	12,9885	0,3714	12,9885	0,3714	
20	15	7	6	2005	231,07		12033	14,1616	0,3720	14,1616	0,3720	

Quadro A2.78 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.4T, após tratamento.

 N_{48}

0

15

0,36

0,36

Figura A2.78 Ensaio de absorção de água por capilaridade do provete IMC 5.4T, após tratamento.

-					r							
	PROVE	ге імс	6.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	8	30	5	2005	231,88	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	10	30	5	2005	232,09	0,45	2	0,1826	0,0136	0,1826	0,0136	0,45
13	7	30	5	2005	232,79	0,65	59	0,9916	0,0588	0,9916	0,0588	0,65
15	22	30	5	2005	233,32	1,80	194	1,7981	0,0930	1,7981	0,0930	1,80
15	57	30	5	2005	233,63	1,85	229	1,9536	0,1130	1,9536	0,1130	1,85
18	53	30	5	2005	235,25	6,02	405	2,5981	0,2177	2,5981	0,2177	6,02
20	19	30	5	2005	235,40		491	2,8607	0,2273	2,8607	0,2273	
9	48	31	5	2005	235,51		1300	4,6547	0,2345	4,6547	0,2345	
15	56	31	5	2005	235,53		1668	5,2726	0,2357	5,2726	0,2357	
10	3	1	6	2005	235,61		2755	6,7762	0,2409	6,7762	0,2409	
18	10	1	6	2005	235,61		3242	7,3507	0,2409	7,3507	0,2409	
8	48	2	6	2005	235,66		4120	8,2865	0,2441	8,2865	0,2441	
20	5	2	6	2005	235,71		4797	8,9415	0,2474	8,9415	0,2474	
8	50	3	6	2005	235,74		5562	9,6281	0,2493	9,6281	0,2493	
19	38	3	6	2005	235,78		6210	10,1735	0,2519	10,1735	0,2519	
10	16	4	6	2005	235,81		7088	10,8689	0,2538	10,8689	0,2538	
12	0	5	6	2005	235,89		8632	11,9944	0,2590	11,9944	0,2590	
20	24	5	6	2005	235,91		9136	12,3396	0,2603	12,3396	0,2603	
12	28	6	6	2005	235,93		10100	12,9743	0,2616	12,9743	0,2616	
20	20	7	6	2005	235,94		12012	14,1492	0,2622	14,1492	0,2622	

Quadro A2.79 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.1T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 6,02 cm POROSIDADE LIVRE - 4,00%

Figura A2.79 Ensaio de absorção de água por capilaridade do provete IMC 6.1T, após tratamento.

PROVETE IMC 6.2T					PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	43	30	5	2005	229,97	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	46	30	5	2005	230,54	0,85	3	0,2236	0,0368	0,2236	0,0368	0,85
12	0	30	5	2005	231,02	1,25	17	0,5323	0,0678	0,5323	0,0678	1,25
12	32	30	5	2005	231,85	1,75	49	0,9037	0,1214	0,9037	0,1214	1,75
15	12	30	5	2005	233,38	5,99	209	1,8664	0,2202	1,8664	0,2202	5,99
15	49	30	5	2005	233,40		246	2,0248	0,2215	2,0248	0,2215	
18	44	30	5	2005	233,40		421	2,6489	0,2215	2,6489	0,2215	
20	11	30	5	2005	233,48		508	2,9098	0,2267	2,9098	0,2267	
9	40	31	5	2005	233,46		1317	4,6851	0,2254	4,6851	0,2254	
15	37	31	5	2005	233,49		1674	5,2820	0,2273	5,2820	0,2273	
9	57	1	6	2005	233,52		2774	6,7995	0,2293	6,7995	0,2293	
18	4	1	6	2005	233,53		3261	7,3722	0,2299	7,3722	0,2299	
8	43	2	6	2005	233,60		4140	8,3066	0,2345	8,3066	0,2345	
20	0	2	6	2005	233,69		4817	8,9601	0,2403	8,9601	0,2403	
8	44	3	6	2005	233,72		5581	9,6445	0,2422	9,6445	0,2422	
19	32	3	6	2005	233,76		6229	10,1890	0,2448	10,1890	0,2448	
10	5	4	6	2005	233,74		7102	10,8796	0,2435	10,8796	0,2435	
11	55	5	6	2005	233,81		8652	12,0083	0,2480	12,0083	0,2480	
20	21	5	6	2005	233,81		9158	12,3545	0,2480	12,3545	0,2480	
12	24	6	6	2005	233,85		10121	12,9878	0,2506	12,9878	0,2506	
20	15	7	6	2005	233,86		12032	14,1610	0,2512	14,1610	0,2512	

Quadro A2.80 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.2T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 3,94%

Figura A2.80 Ensaio de absorção de água por capilaridade do provete IMC 6.2T, após tratamento.
	PROVE	те імс	6.3T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	8	30	5	2005	234,36	0,2	0	0,0000	0,0000	0,0000	0,0000	0,2
12	11	30	5	2005	234,59	0,3	3	0,2236	0,0149	0,2236	0,0149	0,3
13	8	30	5	2005	235,18	0,6	60	1,0000	0,0530	1,0000	0,0530	0,6
15	22	30	5	2005	235,77	1,1	194	1,7981	0,0911	1,7981	0,0911	1,1
15	58	30	5	2005	236,01	6,1	230	1,9579	0,1066	1,9579	0,1066	6,1
18	54	30	5	2005	237,59		406	2,6013	0,2086	2,6013	0,2086	
20	19	30	5	2005	237,81		491	2,8607	0,2228	2,8607	0,2228	
9	49	31	5	2005	237,92		1301	4,6565	0,2299	4,6565	0,2299	
15	57	31	5	2005	237,94		1669	5,2742	0,2312	5,2742	0,2312	
10	3	1	6	2005	238,01		2755	6,7762	0,2357	6,7762	0,2357	
18	10	1	6	2005	238,00		3242	7,3507	0,2351	7,3507	0,2351	
8	48	2	6	2005	238,03		4120	8,2865	0,2370	8,2865	0,2370	
20	6	2	6	2005	238,13		4798	8,9424	0,2435	8,9424	0,2435	
8	50	3	6	2005	238,14		5562	9,6281	0,2441	9,6281	0,2441	
19	38	3	6	2005	238,20		6210	10,1735	0,2480	10,1735	0,2480	
10	16	4	6	2005	238,20		7088	10,8689	0,2480	10,8689	0,2480	
12	0	5	6	2005	238,27		8632	11,9944	0,2525	11,9944	0,2525	
20	24	5	6	2005	238,27		9136	12,3396	0,2525	12,3396	0,2525	
12	28	6	6	2005	238,31		10100	12,9743	0,2551	12,9743	0,2551	
20	20	7	6	2005	238,32		12012	14,1492	0,2558	14,1492	0,2558	

SECÇÃO - 15,4830 cm²

POROSIDADE LIVRE - 3,84%

ALTURA - 6,10 cm

Quadro A2.81 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.3T, após tratamento.

Figura A2.81 Ensaio de absorção de água por capilaridade do provete IMC 6.3T, após tratamento.

	PROVET	Е ІМС	7.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	43	30	5	2005	230,98	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	47	30	5	2005	231,84	0,95	4	0,2582	0,0555	0,2582	0,0555	0,95
12	0	30	5	2005	232,66	1,40	17	0,5323	0,1085	0,5323	0,1085	1,40
12	18	30	5	2005	233,49	3,00	35	0,7638	0,1621	0,7638	0,1621	3,00
12	33	30	5	2005	234,02	5,55	50	0,9129	0,1963	0,9129	0,1963	5,55
12	36	30	5	2005	234,11	5,80	53	0,9399	0,2022	0,9399	0,2022	5,80
15	12	30	5	2005	234,61	5,99	209	1,8664	0,2345	1,8664	0,2345	5, 99
15	50	30	5	2005	234,64		247	2,0290	0,2364	2,0290	0,2364	
18	45	30	5	2005	234,64		422	2,6520	0,2364	2,6520	0,2364	
20	12	30	5	2005	234,66		509	2,9126	0,2377	2,9126	0,2377	
9	41	31	5	2005	234,72		1318	4,6869	0,2416	4,6869	0,2416	
15	37	31	5	2005	234,76		1674	5,2820	0,2441	5,2820	0,2441	
9	57	1	6	2005	234,79		2774	6,7995	0,2461	6,7995	0,2461	
18	4	1	6	2005	234,83		3261	7,3722	0,2487	7,3722	0,2487	
8	43	2	6	2005	234,89		4140	8,3066	0,2525	8,3066	0,2525	
20	1	2	6	2005	234,89		4818	8,9610	0,2525	8,9610	0,2525	
8	45	3	6	2005	234,92		5582	9,6454	0,2545	9,6454	0,2545	
19	33	3	6	2005	234,94		6230	10,1899	0,2558	10,1899	0,2558	
10	5	4	6	2005	234,95		7102	10,8796	0,2564	10,8796	0,2564	
11	55	5	6	2005	235,02		8652	12,0083	0,2609	12,0083	0,2609	
20	21	5	6	2005	235,03		9158	12,3545	0,2616	12,3545	0,2616	
12	24	6	6	2005	235,06		10121	12,9878	0,2635	12,9878	0,2635	
20	15	7	6	2005	235,09		12032	14,1610	0,2655	14,1610	0,2655	

Quadro A2.82 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.1T, após tratamento.

SECÇÃO - 15,4830 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 4,16%

Figura A2.82 Ensaio de absorção de água por capilaridade do provete IMC 7.1T, após tratamento.

	PROVE	ге імс	7.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	8	30	5	2005	232,21	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	12	30	5	2005	232,52	0,35	4	0,2582	0,0200	0,2582	0,0200	0,35
13	8	30	5	2005	234,52	3,50	60	1,0000	0,1492	1,0000	0,1492	3,50
15	22	30	5	2005	235,61	6,01	194	1,7981	0,2196	1,7981	0,2196	6,01
15	59	30	5	2005	235,62		231	1,9621	0,2202	1,9621	0,2202	
18	55	30	5	2005	235,62		407	2,6045	0,2202	2,6045	0,2202	
20	20	30	5	2005	235,67		492	2,8636	0,2235	2,8636	0,2235	
9	49	31	5	2005	235,70		1301	4,6565	0,2254	4,6565	0,2254	
15	58	31	5	2005	235,72		1670	5,2757	0,2267	5,2757	0,2267	
10	3	1	6	2005	235,77		2755	6,7762	0,2299	6,7762	0,2299	
18	11	1	6	2005	235,77		3243	7,3519	0,2299	7,3519	0,2299	
8	50	2	6	2005	235,83		4122	8,2885	0,2338	8,2885	0,2338	
20	6	2	6	2005	235,86		4798	8,9424	0,2357	8,9424	0,2357	
8	51	3	6	2005	235,87		5563	9,6289	0,2364	9,6289	0,2364	
19	39	3	6	2005	235,89		6211	10,1743	0,2377	10,1743	0,2377	
10	16	4	6	2005	235,91		7088	10,8689	0,2390	10,8689	0,2390	
12	0	5	6	2005	235,97		8632	11,9944	0,2428	11,9944	0,2428	
20	24	5	6	2005	235,98		9136	12,3396	0,2435	12,3396	0,2435	
12	28	6	6	2005	236,01		10100	12,9743	0,2454	12,9743	0,2454	
20	20	7	6	2005	236,06		12012	14,1492	0,2487	14,1492	0,2487	

Quadro A2.83 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.2T, após tratamento.

Figura A2.83 Ensaio de absorção de água por capilaridade do provete IMC 7.2T, após tratamento.

	PROVET	Е ІМС	7.3T		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	43	30	5	2005	231,92	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	48	30	5	2005	232,73	0,95	5	0,2887	0,0523	0,2887	0,0523	0,95
12	1	30	5	2005	233,40	1,60	18	0,5477	0,0956	0,5477	0,0956	1,60
12	19	30	5	2005	234,06	2,80	36	0,7746	0,1382	0,7746	0,1382	2,80
12	33	30	5	2005	234,50	3,65	50	0,9129	0,1666	0,9129	0,1666	3,65
12	46	30	5	2005	234,84	4,14	63	1,0247	0,1886	1,0247	0,1886	4,14
15	15	30	5	2005	235,28	5,98	212	1,8797	0,2170	1,8797	0,2170	5,98
15	51	30	5	2005	235,29		248	2,0331	0,2177	2,0331	0,2177	
18	46	30	5	2005	235,29		423	2,6552	0,2177	2,6552	0,2177	
20	13	30	5	2005	235,34		510	2,9155	0,2209	2,9155	0,2209	
9	42	31	5	2005	235,39		1319	4,6886	0,2241	4,6886	0,2241	
15	38	31	5	2005	235,39		1675	5,2836	0,2241	5,2836	0,2241	
9	57	1	6	2005	235,43		2774	6,7995	0,2267	6,7995	0,2267	
18	5	1	6	2005	235,43		3262	7,3734	0,2267	7,3734	0,2267	
8	44	2	6	2005	235,49		4141	8,3076	0,2306	8,3076	0,2306	
20	2	2	6	2005	235,51		4819	8,9620	0,2319	8,9620	0,2319	
8	45	3	6	2005	235,56		5582	9,6454	0,2351	9,6454	0,2351	
19	33	3	6	2005	235,56		6230	10,1899	0,2351	10,1899	0,2351	
10	5	4	6	2005	235,59		7102	10,8796	0,2370	10,8796	0,2370	
11	55	5	6	2005	235,66		8652	12,0083	0,2416	12,0083	0,2416	
20	21	5	6	2005	235,66		9158	12,3545	0,2416	12,3545	0,2416	
12	24	6	6	2005	235,66		10121	12,9878	0,2416	12,9878	0,2416	
20	15	7	6	2005	235,70		12032	14,1610	0,2441	14,1610	0,2441	

Quadro A2.84 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.3T, após tratamento.

Figura A2.84 Ensaio de absorção de água por capilaridade do provete IMC 7.3T, após tratamento.

	PROVET	Е ІМС	8.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	51	30	5	2005	225,73	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	53	30	5	2005	226,29	0,65	2	0,1826	0,0368	0,1826	0,0368	0,65
12	2	30	5	2005	226,80	1,15	11	0,4282	0,0704	0,4282	0,0704	1,15
12	20	30	5	2005	227,40	1,30	29	0,6952	0,1098	0,6952	0,1098	1,30
12	58	30	5	2005	228,28	1,60	67	1,0567	0,1677	1,0567	0,1677	1,60
15	16	30	5	2005	229,32	5,99	205	1,8484	0,2361	1,8484	0,2361	5,99
15	52	30	5	2005	229,33		241	2,0042	0,2368	2,0042	0,2368	
18	46	30	5	2005	229,33		415	2,6300	0,2368	2,6300	0,2368	
20	14	30	5	2005	229,39		503	2,8954	0,2407	2,8954	0,2407	
9	43	31	5	2005	229,46		1312	4,6762	0,2453	4,6762	0,2453	
15	39	31	5	2005	229,47		1668	5,2726	0,2460	5,2726	0,2460	
10	0	1	6	2005	229,54		2769	6,7934	0,2506	6,7934	0,2506	
18	6	1	6	2005	229,56		3255	7,3655	0,2519	7,3655	0,2519	
8	45	2	6	2005	229,64		4134	8,3006	0,2571	8,3006	0,2571	
20	2	2	6	2005	229,67		4811	8,9545	0,2591	8,9545	0,2591	
8	46	3	6	2005	229,71		5575	9,6393	0,2618	9,6393	0,2618	
19	34	3	6	2005	229,75		6223	10,1841	0,2644	10,1841	0,2644	
10	14	4	6	2005	229,74		7103	10,8804	0,2637	10,8804	0,2637	
11	57	5	6	2005	229,88		8646	12,0042	0,2729	12,0042	0,2729	
20	33	5	6	2005	229,88		9162	12,3572	0,2729	12,3572	0,2729	
12	26	6	6	2005	229,91		10115	12,9840	0,2749	12,9840	0,2749	
20	18	7	6	2005	229,95		12027	14,1580	0,2775	14,1580	0,2775	

Quadro A2.85 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.1T, após tratamento.

SECÇÃO - 15,2053 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 4,29%

Figura A2.85 Ensaio de absorção de água por capilaridade do provete IMC 8.1T, após tratamento.

	PROVET	E IMC	8.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	9	30	5	2005	227,18	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	12	30	5	2005	227,43	0,55	3	0,2236	0,0164	0,2236	0,0164	0,55
13	9	30	5	2005	228,09	0,55	60	1,0000	0,0598	1,0000	0,0598	0,55
15	25	30	5	2005	228,75	1,95	196	1,8074	0,1033	1,8074	0,1033	1,95
16	0	30	5	2005	229,10	1,95	231	1,9621	0,1263	1,9621	0,1263	1,95
18	56	30	5	2005	230,59	6,02	407	2,6045	0,2243	2,6045	0,2243	6,02
20	21	30	5	2005	230,67		492	2,8636	0,2295	2,8636	0,2295	
9	50	31	5	2005	230,74		1301	4,6565	0,2341	4,6565	0,2341	
15	58	31	5	2005	230,74		1669	5,2742	0,2341	5,2742	0,2341	
10	3	1	6	2005	230,82		2754	6,7750	0,2394	6,7750	0,2394	
18	12	1	6	2005	230,82		3243	7,3519	0,2394	7,3519	0,2394	
8	50	2	6	2005	230,86		4121	8,2875	0,2420	8,2875	0,2420	
20	7	2	6	2005	230,92		4798	8,9424	0,2460	8,9424	0,2460	
8	51	3	6	2005	230,98		5562	9,6281	0,2499	9,6281	0,2499	
19	39	3	6	2005	231,00		6210	10,1735	0,2512	10,1735	0,2512	
10	16	4	6	2005	231,01		7087	10,8681	0,2519	10,8681	0,2519	
12	0	5	6	2005	231,09		8631	11,9937	0,2571	11,9937	0,2571	
20	24	5	6	2005	231,09		9135	12,3390	0,2571	12,3390	0,2571	
12	28	6	6	2005	231,13		10099	12,9737	0,2598	12,9737	0,2598	
20	20	7	6	2005	231,15		12011	14,1486	0,2611	14,1486	0,2611	

Quadro A2.86 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.2T, após tratamento.

Figura A2.86 Ensaio de absorção de água por capilaridade do provete IMC 8.2T, após tratamento.

	PROVETE IMC 8.3T				PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	51	30	5	2005	228,29	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	54	30	5	2005	228,80	0,70	3	0,2236	0,0335	0,2236	0,0335	0,70
12	3	30	5	2005	229,31	1,00	12	0,4472	0,0671	0,4472	0,0671	1,00
12	21	30	5	2005	230,00	1,15	30	0,7071	0,1125	0,7071	0,1125	1,15
13	0	30	5	2005	231,06	5,40	69	1,0724	0,1822	1,0724	0,1822	5,40
15	16	30	5	2005	231,73	6,00	205	1,8484	0,2262	1,8484	0,2262	6,00
15	53	30	5	2005	231,74		242	2,0083	0,2269	2,0083	0,2269	
18	47	30	5	2005	231,74		416	2,6331	0,2269	2,6331	0,2269	
20	15	30	5	2005	231,78		504	2,8983	0,2295	2,8983	0,2295	
9	43	31	5	2005	231,81		1312	4,6762	0,2315	4,6762	0,2315	
15	39	31	5	2005	231,80		1668	5,2726	0,2308	5,2726	0,2308	
10	0	1	6	2005	231,84		2769	6,7934	0,2335	6,7934	0,2335	
18	6	1	6	2005	231,88		3255	7,3655	0,2361	7,3655	0,2361	
8	45	2	6	2005	231,95		4134	8,3006	0,2407	8,3006	0,2407	
20	3	2	6	2005	232,00		4812	8,9554	0,2440	8,9554	0,2440	
8	47	3	6	2005	232,06		5576	9,6402	0,2479	9,6402	0,2479	
19	35	3	6	2005	232,10		6224	10,1850	0,2506	10,1850	0,2506	
10	14	4	6	2005	232,08		7103	10,8804	0,2493	10,8804	0,2493	
11	57	5	6	2005	232,19		8646	12,0042	0,2565	12,0042	0,2565	
20	23	5	6	2005	232,19		9152	12,3504	0,2565	12,3504	0,2565	
12	26	6	6	2005	232,22		10115	12,9840	0,2585	12,9840	0,2585	
20	18	7	6	2005	232,21		12027	14,1580	0,2578	14,1580	0,2578	

Quadro A2.87 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.3T, após tratamento.

SECÇÃO - 15,2053 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 4,10%

Figura A2.87 Ensaio de absorção de água por capilaridade do provete IMC 8.3T, após tratamento.

	PROVET	E IMC	9.1T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	9	30	5	2005	229,21	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	13	30	5	2005	229,43	0,55	4	0,2582	0,0145	0,2582	0,0145	0,55
13	10	30	5	2005	230,18	0,75	61	1,0083	0,0638	1,0083	0,0638	0,75
15	28	30	5	2005	232,17	0,85	199	1,8212	0,1947	1,8212	0,1947	0,85
16	1	30	5	2005	232,58	6,00	232	1,9664	0,2216	1,9664	0,2216	6,00
18	57	30	5	2005	232,76		408	2,6077	0,2335	2,6077	0,2335	
20	22	30	5	2005	232,84		493	2,8665	0,2387	2,8665	0,2387	
9	51	31	5	2005	232,90		1302	4,6583	0,2427	4,6583	0,2427	
15	59	31	5	2005	232,90		1670	5,2757	0,2427	5,2757	0,2427	
10	3	1	6	2005	232,98		2754	6,7750	0,2479	6,7750	0,2479	
18	12	1	6	2005	232,99		3243	7,3519	0,2486	7,3519	0,2486	
8	51	2	6	2005	233,02		4122	8,2885	0,2506	8,2885	0,2506	
20	7	2	6	2005	233,08		4798	8,9424	0,2545	8,9424	0,2545	
8	52	3	6	2005	233,14		5563	9,6289	0,2585	9,6289	0,2585	
19	40	3	6	2005	233,14		6211	10,1743	0,2585	10,1743	0,2585	
10	16	4	6	2005	233,14		7087	10,8681	0,2585	10,8681	0,2585	
12	0	5	6	2005	233,27		8631	11,9937	0,2670	11,9937	0,2670	
20	23	5	6	2005	233,27		9134	12,3383	0,2670	12,3383	0,2670	
12	28	6	6	2005	233,29		10099	12,9737	0,2683	12,9737	0,2683	
20	20	7	6	2005	233,33		12011	14,1486	0,2710	14,1486	0,2710	

SECÇÃO - 15,2053 cm²

POROSIDADE LIVRE - 4,20%

ALTURA - 6,00 cm

Quadro A2.88 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.1T, após tratamento.

Figura A2.88 Ensaio de absorção de água por capilaridade do provete IMC 9.1T, após tratamento.

	PROVET	E IMC	9.2T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	52	30	5	2005	227,78	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	54	30	5	2005	228,34	0,45	2	0,1826	0,0368	0,1826	0,0368	0,45
12	3	30	5	2005	228,82	1,00	11	0,4282	0,0684	0,4282	0,0684	1,00
12	22	30	5	2005	229,54	1,35	30	0,7071	0,1157	0,7071	0,1157	1,35
13	2	30	5	2005	230,59	5,25	70	1,0801	0,1848	1,0801	0,1848	5,25
15	16	30	5	2005	231,25	5,98	204	1,8439	0,2282	1,8439	0,2282	5,98
15	53	30	5	2005	231,28		241	2,0042	0,2302	2,0042	0,2302	
18	48	30	5	2005	231,28		416	2,6331	0,2302	2,6331	0,2302	
20	15	30	5	2005	231,33		503	2,8954	0,2335	2,8954	0,2335	
9	44	31	5	2005	231,39		1312	4,6762	0,2374	4,6762	0,2374	
15	40	31	5	2005	231,39		1668	5,2726	0,2374	5,2726	0,2374	
10	0	1	6	2005	231,45		2768	6,7922	0,2414	6,7922	0,2414	
18	7	1	6	2005	231,47		3255	7,3655	0,2427	7,3655	0,2427	
8	46	2	6	2005	231,55		4134	8,3006	0,2479	8,3006	0,2479	
20	3	2	6	2005	231,58		4811	8,9545	0,2499	8,9545	0,2499	
8	47	3	6	2005	231,61		5575	9,6393	0,2519	9,6393	0,2519	
19	35	3	6	2005	231,67		6223	10,1841	0,2558	10,1841	0,2558	
10	14	4	6	2005	231,68		7102	10,8796	0,2565	10,8796	0,2565	
11	57	5	6	2005	231,78		8645	12,0035	0,2631	12,0035	0,2631	
20	23	5	6	2005	231,78		9151	12,3498	0,2631	12,3498	0,2631	
12	26	6	6	2005	231,78		10114	12,9833	0,2631	12,9833	0,2631	
20	18	7	6	2005	231,80		12026	14,1574	0,2644	14,1574	0,2644	

Quadro A2.89 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.2T, após tratamento.

SECÇÃO - 15,2053 cm² ALTURA - 5,98 cm POROSIDADE LIVRE - 4,11%

Figura A2.89 Ensaio de absorção de água por capilaridade do provete IMC 9.2T, após tratamento.

	PROVET	E IMC	9.3 T		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
12	9	30	5	2005	228,27	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
12	13	30	5	2005	228,51	0,55	4	0,2582	0,0158	0,2582	0,0158	0,55
13	12	30	5	2005	229,17	0,55	63	1,0247	0,0592	1,0247	0,0592	0,55
15	30	30	5	2005	230,44	1,80	201	1,8303	0,1427	1,8303	0,1427	1,80
16	2	30	5	2005	230,94	2,05	233	1,9706	0,1756	1,9706	0,1756	2,05
18	58	30	5	2005	231,58	6,05	409	2,6109	0,2177	2,6109	0,2177	6,05
20	22	30	5	2005	231,65		493	2,8665	0,2223	2,8665	0,2223	
9	51	31	5	2005	231,72		1302	4,6583	0,2269	4,6583	0,2269	
15	59	31	5	2005	231,73		1670	5,2757	0,2276	5,2757	0,2276	
10	3	1	6	2005	231,78		2754	6,7750	0,2308	6,7750	0,2308	
18	12	1	6	2005	231,76		3243	7,3519	0,2295	7,3519	0,2295	
8	52	2	6	2005	231,85		4123	8,2896	0,2354	8,2896	0,2354	
20	8	2	6	2005	231,88		4799	8,9433	0,2374	8,9433	0,2374	
8	52	3	6	2005	231,93		5563	9,6289	0,2407	9,6289	0,2407	
19	40	3	6	2005	231,96		6211	10,1743	0,2427	10,1743	0,2427	
10	16	4	6	2005	231,96		7087	10,8681	0,2427	10,8681	0,2427	
12	0	5	6	2005	232,05		8631	11,9937	0,2486	11,9937	0,2486	
20	24	5	6	2005	232,05		9135	12,3390	0,2486	12,3390	0,2486	
12	28	6	6	2005	232,11		10099	12,9737	0,2525	12,9737	0,2525	
20	20	7	6	2005	232,11		12011	14,1486	0,2525	14,1486	0,2525	

SECÇÃO - 15,2053 cm²

POROSIDADE LIVRE - 3,90%

ALTURA - 6,05 cm

Quadro A2.90 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.3T, após tratamento.

Figura A2.90 Ensaio de absorção de água por capilaridade do provete IMC 9.3T, após tratamento.

				PROVETE 1.1	г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	21	17	6	2005	227,72	0	0,00	0,0000
11	37	17	6	2005	227,71	16	0,27	-0,0006
12	36	17	6	2005	227,69	75	1,25	-0,0019
15	53	17	6	2005	227,66	272	4,53	-0,0039
20	44	17	6	2005	227,60	563	9,38	-0,0078
10	14	18	6	2005	227,53	1373	22,88	-0,0123
22	27	18	6	2005	227,47	2106	35,10	-0,0161
12	18	19	6	2005	227,37	2937	48,95	-0,0226
22	4	19	6	2005	227,31	3523	58,72	-0,0265
10	13	20	6	2005	227,24	4252	70,87	-0,0310
1	35	21	6	2005	227,15	5174	86,23	-0,0368
10	2	21	6	2005	227,11	5681	94,68	-0,0394
20	21	21	6	2005	227,06	6300	105,00	-0,0426
10	13	22	6	2005	226,96	7132	118,87	-0,0491
22	2	22	6	2005	226,87	7841	130,68	-0,0549
15	58	23	6	2005	226,75	8917	148,62	-0,0626
19	22	24	6	2005	226,58	10561	176,02	-0,0736
15	55	25	6	2005	226,44	11794	196,57	-0,0827
19	52	26	6	2005	226,29	13471	224,52	-0,0924
19	9	27	6	2005	226,16	14868	247,80	-0,1008
20	47	28	6	2005	226,01	16406	273,43	-0,1104
13	20	29	6	2005	225,91	17399	289,98	-0,1169
20	49	30	6	2005	225,76	19288	321,47	-0,1266
10	21	1	7	2005	225,68	20100	335,00	-0,1318
12	4	2	7	2005	225,54	21643	360,72	-0,1408
20	30	3	7	2005	225,35	23589	393,15	-0,1531
11	54	4	7	2005	225,28	24513	408,55	-0,1576
16	31	5	7	2005	225,13	26230	437,17	-0,1673
20	48	6	7	2005	224,97	27927	465,45	-0,1776
11	54	7	7	2005	224,89	28833	480,55	-0,1828
13	31	9	7	2005	224,54	31810	530,17	-0,2054
21	21	10	7	2005	224,35	33720	562,00	-0,2177
20	12	11	7	2005	224,18	35091	584,85	-0,2286
20	31	12	7	2005	224,06	36550	609,17	-0,2364
19	46	13	7	2005	223,83	37945	632,42	-0,2512
19	59	14	7	2005	223,69	39398	656,63	-0,2603
20	57	15	7	2005	223,53	40896	681,60	-0,2706
14	44	16	7	2005	223,44	41963	699,38	-0,2764
11	25	18	7	2005	223,21	44644	744,07	-0,2913
20	2	19	7	2005	223,06	46601	776,68	-0,3010
19	18	20	7	2005	222,96	47997	799,95	-0,3074
11	44	21	7	2005	222,89	48983	816,38	-0,3120
13	28	22	7	2005	222,81	50527	842,12	-0,3171
16	59	24	7	2005	222,72	53618	893,63	-0,3229
12	10	26	7	2005	222,69	56209	936,82	-0,3249
19	45	27	7	2005	222,68	58104	968,40	-0,3255
20	15	28	7	2005	222,68	59574	992,90	-0,3255
14	6	29	7	2005	222,67	60645	1010,75	-0,3262
13	48	1	8	2005	222,65	62067	1034,45	-0,3275
12	4	2	8	2005	222,65	63403	1056,72	-0,3275
18	10	3	8	2005	222,65	65209	1086,82	-0,3275
11	16	4	- 8	2005	222,64	66235	1103,92	-0,3281
14	34	5	8	2005	222.64	67873	1131 22	-0 3281

Quadro A2.91 Re	Resultados do ensaio	de evaporação do	provete IMC 1.1T	após tratamento.
-----------------	----------------------	------------------	------------------	------------------

Figura A2.91 Ensaio de evaporação do provete IMC 1.1T, após tratamento.

			1	PROVETE 1.2	г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	42	17	6	2005	227,78	0	0,00	0,0000
12	7	17	6	2005	227,72	25	0,42	-0,0039
12	38	17	6	2005	227,71	56	0,93	-0,0045
15	56	17	6	2005	227,68	254	4,23	-0,0065
20	46	17	6	2005	227,65	544	9,07	-0,0084
10	15	18	6	2005	227,56	1353	22,55	-0,0142
22	30	18	6	2005	227,49	2088	34,80	-0,0187
12	19	19	6	2005	227,42	2917	48,62	-0,0233
22	5	19	6	2005	227,38	3503	58,38	-0,0258
10	15	20	6	2005	227,31	4233	70,55	-0,0304
1	40	21	6	2005	227,22	5158	85,97	-0,0362
10	6	21	6	2005	227,17	5664	94,40	-0,0394
20	25	21	6	2005	227,12	6283	104,72	-0,0426
10	16	22	6	2005	227,05	7114	118,57	-0,0471
22	5	22	6	2005	226,97	7823	130,38	-0,0523
16	0	23	6	2005	226,85	8898	148,30	-0,0601
19	26	24	6	2005	226,72	10544	175,73	-0,0685
15	59	25	6	2005	226,65	11777	196,28	-0,0730
19	55	26	6	2005	226,48	13453	224,22	-0,0840
19	11	27	6	2005	226,35	14849	247,48	-0,0924
20	51	28	6	2005	226,23	16389	273,15	-0,1001
13	28	29	6	2005	226,16	17386	289,77	-0,1046
20	58	30	6	2005	226,00	19276	321,27	-0,1150
10	23	1	7	2005	225,94	20081	334,68	-0,1188
12	7	2	7	2005	225,82	21625	360,42	-0,1266
20	32	3	7	2005	225,67	23570	392,83	-0,1363
11	59	4	7	2005	225,61	24497	408,28	-0,1402
16	34	5	7	2005	225,47	26212	436,87	-0,1492
20	51	6	7	2005	225,31	27909	465,15	-0,1595
11	57	7	7	2005	225,26	28815	480,25	-0,1628
13	33	9	7	2005	225,00	31791	529,85	-0,1796
21	24	10	7	2005	224,78	33702	561,70	-0,1938
20	15	11	7	2005	224,62	35073	584,55	-0,2041
20	33	12	7	2005	224,46	36531	608,85	-0,2144
19	48	13	7	2005	224,33	37926	632,10	-0,2228
20	3	14	7	2005	224,19	39381	656,35	-0,2319
20	59	15	7	2005	224,07	40877	681,28	-0,2396
14	48	16	7	2005	223,97	41946	699,10	-0,2461
11	35	18	7	2005	223,74	44633	743,88	-0,2609
20	4	19	7	2005	223,57	46582	776,37	-0,2719
19	21	20	7	2005	223,44	47979	799,65	-0,2803
11	46	21	7	2005	223,35	48964	816,07	-0,2861
13	31	22	7	2005	223,20	50509	841,82	-0,2958
17	1	24	7	2005	222,97	53599	893,32	-0,3107
12	13	26	7	2005	222,80	56191	936,52	-0,3216
19	48	27	7	2005	222,66	58086	968,10	-0,3307
20	18	28	7	2005	222,58	59556	992,60	-0,3359
14	10	29	7	2005	222,53	60628	1010,47	-0,3391
13	51	1		2005	222,38	64929	1082,15	-0,3488
12	6	2	8	2005	222,37	66264	1104,40	-0,3494
18	13	3	8	2005	222,31	680/1	1154,52	-0,3533
	19	4	8	2005	222,28	09097	1151,62	-0,3552
14	.57	5	X	2005	////8	/0/35	11/8 97	-11 <55 /

Quadro A2.92	Resultados do	ensaio de eva	poração do prov	vete IMC 1.2T	após tratamento.
--------------	---------------	---------------	-----------------	---------------	------------------

Figura A2.92 Ensaio de evaporação do provete IMC 1.2T, após tratamento.

HOPA	MINUTO		MÊS		DESO	MINUTOS	НОРУС	d\//\S
HUKA 11	12	DIA 17	IVIE5	ANU	PESU 225 54	MINUTUS	HURAS	0.0000
12	43	17	0	2005	225,54	0	0,00	0,0000
12	20	17	6	2005	225,49	24	0,40	-0,0032
12	56	17	6	2003	223,40	252	0,93	-0,0039
20	50	17	6	2005	225,40	2JJ	4,22	-0,0032
20	40	17	0	2005	225,41	1252	9,05	-0,0084
10	10	10	0	2003	220,33	1352	22,33	-0,0130
12	30	18	0	2005	225,29	2087	34,78	-0,0101
12	19	19	0	2005	225,23	2910	48,00	-0,0200
10	0 1E	19	6	2003	223,17	4222	30,37 70 F2	-0,0239
10	13	20	0	2003	223,12	4232	70,33	-0,0271
10	40	21	0	2003	225,04	5157	03,93	-0,0323
10	0	21	6	2005	225,01	5663	94,38	-0,0342
20	20	21	0	2005	224,97	0282	104,70	-0,0368
10	16	22	6	2005	224,91	7113	118,55	-0,0407
22	5	22	6	2005	224,85	7822	130,37	-0,0446
10	1	23	6	2005	224,76	8898	148,30	-0,0504
19	27	24	6	2005	224,64	10544	1/5,/3	-0,0581
10	0	25	6	2005	224,57	11///	196,28	-0,0626
19	56	26	6	2005	224,43	13453	224,22	-0,0717
19	12	27	6	2005	224,33	14849	247,48	-0,0782
20	52	28	6	2005	224,20	16389	2/3,15	-0,0865
13	28	29	6	2005	224,12	1/385	289,75	-0,0917
20	58	30	6	2005	223,92	19275	321,25	-0,1046
10	23	1	/	2005	223,89	20080	334,67	-0,1066
12	/	2	/	2005	223,78	21624	360,40	-0,1137
20	32	3	7	2005	223,61	23569	392,82	-0,1247
11	59	4	/	2005	223,53	24496	408,27	-0,1298
16	35	5	7	2005	223,39	26212	436,87	-0,1389
20	51	6	/	2005	223,25	27908	465,13	-0,1479
11	57	/	/	2005	223,15	28814	480,23	-0,1544
13	33	9	/	2005	222,93	31790	529,83	-0,1686
21	24	10	/	2005	222,71	33701	561,68	-0,1828
20	16	11	/	2005	222,56	35073	584,55	-0,1925
20	34	12	/	2005	222,41	36531	608,85	-0,2022
19	49	13	/	2005	222,28	37926	632,10	-0,2106
20	4	14	7	2005	222,14	39381	656,35	-0,2196
21	0	15	7	2005	222,01	40877	681,28	-0,2280
14	48	16	7	2005	221,93	41945	699,08	-0,2332
11	35	18	7	2005	221,71	44632	743,87	-0,2474
20	5	19	7	2005	221,52	46582	776,37	-0,2596
19	22	20	7	2005	221,40	47979	799,65	-0,2674
11	46	21	7	2005	221,32	48963	816,05	-0,2726
13	31	22	7	2005	221,16	50508	841,80	-0,2829
17	1	24	7	2005	220,93	53598	893,30	-0,2977
12	13	26	7	2005	220,70	56190	936,50	-0,3126
19	48	27	7	2005	220,56	58085	968,08	-0,3216
20	19	28	7	2005	220,40	59556	992,60	-0,3320
14	11	29	7	2005	220,39	60628	1010,47	-0,3326
13	51	1	8	2005	220,10	64928	1082,13	-0,3514
12	7	2	8	2005	220,05	66264	1104,40	-0,3546
18	14	3	8	2005	219,94	68071	1134,52	-0,3617
11	19	4	8	2005	219,89	69096	1151,60	-0,3649
14	38	5	8	2005	219.84	70735	1178.92	-0 3681

Quadro A2.93	Resultados do	ensaio de eva	poração do pi	rovete IMC 1.3T	, após tratamento.
--------------	---------------	---------------	---------------	-----------------	--------------------

Figura A2.93 Ensaio de evaporação do provete IMC 1.3T, após tratamento.

PROVETE 1.4T									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	23	17	6	2005	205,71	0	0,00	0,0000	
11	38	17	6	2005	205,68	15	0,25	-0,0019	
12	36	17	6	2005	205,64	73	1,22	-0,0045	
15	53	17	6	2005	205,60	270	4,50	-0,0071	
20	44	17	6	2005	205,58	561	9,35	-0,0084	
10	14	18	6	2005	205,47	1371	22,85	-0,0155	
22	27	18	6	2005	205,39	2104	35,07	-0,0207	
12	18	19	6	2005	205,31	2935	48,92	-0,0258	
22	4	19	6	2005	205,26	3521	58,68	-0,0291	
10	13	20	6	2005	205,18	4250	70,83	-0,0342	
1	36	21	6	2005	205,09	5173	86,22	-0,0400	
10	2	21	6	2005	205,04	5679	94,65	-0,0433	
20	22	21	6	2005	204,99	6299	104,98	-0,0465	
10	13	22	6	2005	204,89	7130	118,83	-0,0530	
22	2	22	6	2005	204,81	7839	130,65	-0,0581	
15	58	23	6	2005	204,68	8915	148,58	-0,0665	
19	23	24	6	2005	204,52	10560	176,00	-0,0769	
15	55	25	6	2005	204,39	11792	196,53	-0,0853	
19	52	26	6	2005	204,23	13469	224,48	-0,0956	
19	9	27	6	2005	204,08	14866	247,77	-0,1053	
20	48	28	6	2005	203,95	16405	273,42	-0,1137	
13	20	29	6	2005	203,86	17397	289,95	-0,1195	
20	50	30	6	2005	203,68	19287	321,45	-0,1311	
10	21	1	7	2005	203,61	20098	334,97	-0,1356	
12	5	2	7	2005	203,48	21642	360,70	-0,1440	
20	30	3	7	2005	203,29	23587	393,12	-0,1563	
11	56	4	7	2005	203,20	24513	408,55	-0,1621	
16	32	5	7	2005	203,04	26229	437,15	-0,1724	
20	48	6	7	2005	202,87	27925	465,42	-0,1834	
11	55	7	7	2005	202,77	28832	480,53	-0,1899	
13	31	9	7	2005	202,43	31808	530,13	-0,2118	
21	21	10	7	2005	202,19	33718	561,97	-0,2273	
20	13	11	7	2005	202,01	35090	584,83	-0,2390	
20	31	12	7	2005	201,78	36548	609,13	-0,2538	
19	46	13	7	2005	201,65	37943	632,38	-0,2622	
20	0	14	7	2005	201,47	39397	656,62	-0,2738	
20	57	15	7	2005	201,28	40894	681,57	-0,2861	
14	44	16	7	2005	201,17	41961	699,35	-0,2932	
11	26	18	7	2005	200,87	44643	744,05	-0,3126	
20	2	19	7	2005	200,68	46599	776,65	-0,3249	
19	18	20	7	2005	200,56	47995	799,92	-0,3326	
11	44	21	7	2005	200,46	48981	816,35	-0,3391	
13	29	22	7	2005	200,34	50526	842,10	-0,3468	
16	59	24	7	2005	200,14	53616	893,60	-0,3597	
12	11	26	7	2005	200,05	56208	936,80	-0,3656	
19	46	27	7	2005	200,00	58103	968,38	-0,3688	
20	15	28	7	2005	200,00	59572	992,87	-0,3688	
14	7	29	7	2005	200,00	60644	1010,73	-0,3688	
13	49	1	8	2005	199,98	64946	1082,43	-0,3701	
12	4	2	8	2005	199,99	66281	1104,68	-0,3694	
18	10	3	8	2005	199,98	68087	1134,78	-0,3701	
11	16	4	8	2005	199,97	69113	1151,88	-0,3707	
14	34	5	8	2005	199.96	70751	1179 18	-0 3714	

Quadro A2.94 Resultados do ensaio de evaporação do provete IMC 1.4T, após tratamento.

Figura A2.94 Ensaio de evaporação do provete IMC 1.4T, após tratamento.

	PROVETE 2.1T									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
11	25	17	6	2005	223,00	0	0,00	0,0000		
11	38	17	6	2005	222,96	13	0,22	-0,0026		
12	36	17	6	2005	222,91	71	1,18	-0,0058		
15	54	17	6	2005	222,87	269	4,48	-0,0084		
20	44	17	6	2005	222,84	559	9,32	-0,0103		
10	14	18	6	2005	222,71	1369	22,82	-0,0187		
22	27	18	6	2005	222,64	2102	35,03	-0,0233		
12	18	19	6	2005	222,54	2933	48,88	-0,0297		
22	4	19	6	2005	222,46	3519	58,65	-0,0349		
10	13	20	6	2005	222,39	4248	70,80	-0,0394		
1	37	21	6	2005	222,28	5172	86,20	-0,0465		
10	3	21	6	2005	222.23	5678	94,63	-0.0497		
20	23	21	6	2005	222.17	6298	104.97	-0.0536		
10	14	22	6	2005	222.07	7129	118.82	-0.0601		
22	3	22	6	2005	222,07	7838	130.63	-0.0665		
15	50	22	6	2005	221,77	801/	148 57	-0.0756		
10	24	23	6	2005	221,05	10550	140,57	-0,0730		
19	56	24	6	2003	221,00	10009	173,96	-0,0072		
10	50	23	6	2003	221,00	11/91	190,52	-0,0949		
19	53	20	0	2005	221,35	13408	224,47	-0,1066		
19	9	27	6	2005	221,22	14864	247,73	-0,1150		
20	48	28	6	2005	221,03	16403	2/3,38	-0,1272		
13	21	29	6	2005	220,94	1/396	289,93	-0,1330		
20	50	30	6	2005	220,75	19285	321,42	-0,1453		
10	21	1	7	2005	220,67	20096	334,93	-0,1505		
12	5	2	7	2005	220,51	21640	360,67	-0,1608		
20	30	3	7	2005	220,32	23585	393,08	-0,1731		
11	56	4	7	2005	220,21	24511	408,52	-0,1802		
16	32	5	7	2005	220,05	26227	437,12	-0,1905		
20	49	6	7	2005	219,86	27924	465,40	-0,2028		
11	55	7	7	2005	219,76	28830	480,50	-0,2093		
13	31	9	7	2005	219,42	31806	530,10	-0,2312		
21	22	10	7	2005	219,16	33717	561,95	-0,2480		
20	13	11	7	2005	218,98	35088	584,80	-0,2596		
20	32	12	7	2005	218,75	36547	609,12	-0,2745		
19	46	13	7	2005	218,57	37941	632,35	-0,2861		
20	0	14	7	2005	218,39	39395	656,58	-0,2977		
20	58	15	7	2005	218,22	40893	681,55	-0,3087		
14	44	16	7	2005	218,10	41959	699,32	-0,3165		
11	26	18	7	2005	217,80	44641	744,02	-0,3359		
20	3	19	7	2005	217,57	46598	776,63	-0,3507		
19	19	20	7	2005	217,38	47994	799,90	-0,3630		
11	44	21	7	2005	217,28	48979	816,32	-0,3694		
13	29	22	7	2005	217,09	50524	842,07	-0,3817		
16	59	24	7	2005	216,76	53614	893,57	-0,4030		
12	11	26	7	2005	216,55	56206	936,77	-0,4166		
19	46	27	7	2005	216,41	58101	968,35	-0,4256		
20	16	28	7	2005	216,33	59571	992,85	-0,4308		
14	8	29	7	2005	216,29	60643	1010,72	-0,4334		
13	49	1	8	2005	216,18	64944	1082,40	-0,4405		
12	5	2	8	2005	216.15	66280	1104.67	-0.4424		
18	11	3	8	2005	216.15	68086	1134.77	-0.4424		
11	17	4	R	2005	216.15	69112	1151.87	-0.4424		
14	34	5	8	2005	216,15	70749	1179 15	-0 4424		

Quadro A2.95 Resultados do ensaio de evaporação do provete IMC 2.1T, após tratamento.

Figura A2.95 Ensaio de evaporação do provete IMC 2.1T, após tratamento.

	PROVETE 2.2T										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
11	45	17	6	2005	220,45	0	0,00	0,0000			
12	7	17	6	2005	220,42	22	0,37	-0,0019			
12	39	17	6	2005	220,41	54	0,90	-0,0026			
15	57	17	6	2005	220,36	252	4,20	-0,0058			
20	46	17	6	2005	220,32	541	9,02	-0,0084			
10	15	18	6	2005	220,22	1350	22,50	-0,0149			
22	30	18	6	2005	220,13	2085	34,75	-0,0207			
12	19	19	6	2005	220,06	2914	48,57	-0,0252			
22	5	19	6	2005	219,99	3500	58,33	-0,0297			
10	15	20	6	2005	219,91	4230	70,50	-0,0349			
1	41	21	6	2005	219,81	5156	85,93	-0,0413			
10	7	21	6	2005	219,78	5662	94,37	-0,0433			
20	26	21	6	2005	219,71	6281	104,68	-0,0478			
10	17	22	6	2005	219,62	7112	118,53	-0,0536			
22	6	22	6	2005	219,54	7821	130,35	-0,0588			
16	1	23	6	2005	219,42	8896	148,27	-0,0665			
19	28	24	6	2005	219,28	10543	175,72	-0,0756			
16	1	25	6	2005	219,17	11776	196,27	-0,0827			
19	57	26	6	2005	218,99	13452	224,20	-0,0943			
19	12	27	6	2005	218,85	14847	247,45	-0,1033			
20	52	28	6	2005	218,72	16387	273,12	-0,1117			
13	28	29	6	2005	218,63	17383	289,72	-0,1175			
20	58	30	6	2005	218,46	19273	321,22	-0,1285			
10	23	1	/	2005	218,40	20078	334,63	-0,1324			
12	8	2	/	2005	218,27	21623	360,38	-0,1408			
20	32	3	/	2005	218,09	23567	392,78	-0,1524			
16	35	5	/	2005	217,86	26210	436,83	-0,16/3			
20	52	6	/	2005	217,70	27907	465,12	-0,1776			
11	58	1	/	2005	217,61	28813	480,22	-0,1834			
13	33	9	/	2005	217,28	31/88	529,80	-0,2047			
21	25	10	7	2005	217,03	33700	561,67	-0,2209			
20	10	11	7	2005	210,85	35071	584,52	-0,2325			
20	34	12	7	2005	210,07	30329	608,82	-0,2441			
20	49 5	13	7	2005	210,30	20290	656 22	-0,2001			
20	0	14	7	2005	210,33	40975	691.25	-0,2001			
21	6	10	7	2005	210,10	46581	776 35	-0,2010			
10	22	20	7	2005	215,52	40301	770,55	-0,3313			
17		20	7	2005	215,14	47777	816.02	-0,3430			
13	32	21	7	2005	213,00	50507	841 78	-0,3320			
13	2	22	7	2005	214,77	53597	893.28	_0 3914			
17	14	24	7	2005	214,37	56189	936.48	-0 4140			
12	/4 ∆Q	20	7	2005	213,04	58084	968.07	-0 4289			
20	47 10	27	7	2005	213,51	59554	992 57	-0 4398			
14	11	20	7	2005	213,54	60626	1010.43	-0.4463			
13	52	1	, 8	2005	213.23	64927	1082.12	-0.4663			
13	7	2	8	2005	213,23	66262	1104.37	-0.4721			
12	14	3	8	2005	213,14	68069	1134.48	-0.4786			
11	20	4	8	2005	213.00	69095	1151.58	-0.4812			
14	38		8	2005	212.97	70733	1178.88	-0.4831			

Quadro A2.96 Resultados do ensaio de evaporação do provete IMC 2.2T, após tratamento.

Figura A2.96 Ensaio de evaporação do provete IMC 2.2T, após tratamento.

	PROVETE 2.3T											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	16	17	6	2005	222,20	0	0,00	0,0000				
12	34	17	6	2005	222,16	18	0,30	-0,0026				
13	5	17	6	2005	222,12	49	0,82	-0,0052				
16	8	17	6	2005	221,98	232	3,87	-0,0142				
20	48	17	6	2005	221,82	512	8,53	-0,0245				
10	18	18	6	2005	221,13	1322	22,03	-0,0691				
22	33	18	6	2005	220,57	2057	34,28	-0,1053				
12	22	19	6	2005	219,82	2886	48,10	-0,1537				
22	8	19	6	2005	219,23	3472	57,87	-0,1918				
10	19	20	6	2005	218,55	4203	70,05	-0,2357				
2	4	21	6	2005	218,13	5148	85,80	-0,2629				
10	14	21	6	2005	217,97	5638	93,97	-0,2732				
20	32	21	6	2005	217,81	6256	104,27	-0,2835				
10	23	22	6	2005	217,60	7087	118,12	-0,2971				
22	12	22	6	2005	217,44	7796	129,93	-0,3074				
16	6	23	6	2005	217,23	8870	147,83	-0,3210				
19	39	24	6	2005	216,99	10523	175,38	-0,3365				
16	9	25	6	2005	216,82	11753	195,88	-0,3475				
20	6	26	6	2005	216,63	13430	223,83	-0,3597				
19	17	27	6	2005	216,49	14821	247,02	-0,3688				
20	59	28	6	2005	216,32	16363	272,72	-0,3798				
13	34	29	6	2005	216,25	17358	289,30	-0,3843				
21	2	30	6	2005	216,08	19246	320,77	-0,3953				
10	26	1	7	2005	216,03	20050	334,17	-0,3985				
12	18	2	7	2005	215,90	21602	360,03	-0,4069				
20	34	3	7	2005	215,77	23538	392,30	-0,4153				
12	6	4	7	2005	215,69	24470	407,83	-0,4205				
16	42	5	7	2005	215,59	26186	436,43	-0,4269				
20	58	6	7	2005	215,46	27882	464,70	-0,4353				
12	4	7	7	2005	215,42	28788	479,80	-0,4379				
13	35	9	7	2005	215,21	31759	529,32	-0,4515				
21	31	10	7	2005	215,06	33675	561,25	-0,4612				
20	22	11	7	2005	214,97	35046	584,10	-0,4670				
20	40	12	7	2005	214,93	36504	608,40	-0,4695				
14	44	5	8	2005	214,76	70708	1178,47	-0,4805				

Quadro A2.97 Resultados do ensaio de evaporação do provete IMC 2.3T, após tratamento.

Figura A2.97 Ensaio de evaporação do provete IMC 2.3T, após tratamento.

	PROVETE 2.4T											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
11	54	17	6	2005	220,04	0	0,00	0,0000				
12	20	17	6	2005	219,98	26	0,43	-0,0039				
12	43	17	6	2005	219,93	49	0,82	-0,0071				
15	59	17	6	2005	219,76	245	4,08	-0,0181				
20	47	17	6	2005	219,54	533	8,88	-0,0323				
10	17	18	6	2005	218,96	1343	22,38	-0,0698				
22	32	18	6	2005	218,50	2078	34,63	-0,0995				
12	20	19	6	2005	217,95	2906	48,43	-0,1350				
22	7	19	6	2005	217,42	3493	58,22	-0,1692				
10	17	20	6	2005	216,78	4223	70,38	-0,2106				
1	45	21	6	2005	215,99	5151	85,85	-0,2616				
10	9	21	6	2005	215,74	5655	94,25	-0,2777				
20	28	21	6	2005	215,49	6274	104,57	-0,2939				
10	19	22	6	2005	215,22	7105	118,42	-0,3113				
22	8	22	6	2005	215,01	7814	130,23	-0,3249				
16	3	23	6	2005	214,76	8889	148,15	-0,3410				
19	33	24	6	2005	214,47	10539	175,65	-0,3597				
16	4	25	6	2005	214,30	11770	196,17	-0,3707				
20	0	26	6	2005	214,08	13446	224,10	-0,3849				
19	14	27	6	2005	213,93	14840	247,33	-0,3946				
20	55	28	6	2005	213,75	16381	273,02	-0,4063				
13	33	29	6	2005	213,67	17379	289,65	-0,4114				
21	0	30	6	2005	213,48	19266	321,10	-0,4237				
10	24	1	7	2005	213,42	20070	334,50	-0,4276				
12	10	2	7	2005	213,29	21616	360,27	-0,4360				
20	33	3	7	2005	213,15	23559	392,65	-0,4450				
12	2	4	7	2005	213,08	24488	408,13	-0,4495				
16	37	5	7	2005	212,96	26203	436,72	-0,4573				
20	54	6	7	2005	212,85	27900	465,00	-0,4644				
12	0	7	7	2005	212,79	28806	480,10	-0,4683				
13	33	9	7	2005	212,61	31779	529,65	-0,4799				
21	27	10	7	2005	212,49	33693	561,55	-0,4876				
20	18	11	7	2005	212,48	35064	584,40	-0,4883				
20	36	12	7	2005	212,37	36522	608,70	-0,4954				
14	40	5	8	2005	212,25	70726	1178,77	-0,5031				

Quadro A2.98 Resultados do ensaio de evaporação do provete IMC 2.4T, após tratamento.

Figura A2.98 Ensaio de evaporação do provete IMC 2.4T, após tratamento.

	PROVETE 3.1T										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	18	17	6	2005	232,61	0	0,00	0,0000			
12	35	17	6	2005	232,57	17	0,28	-0,0026			
13	6	17	6	2005	232,53	48	0,80	-0,0052			
16	8	17	6	2005	232,41	230	3,83	-0,0129			
20	48	17	6	2005	232,28	510	8,50	-0,0213			
10	18	18	6	2005	231,67	1320	22,00	-0,0607			
22	33	18	6	2005	231,21	2055	34,25	-0,0904			
12	22	19	6	2005	230,71	2884	48,07	-0,1227			
22	8	19	6	2005	230,54	3470	57,83	-0,1337			
10	19	20	6	2005	230,39	4201	70,02	-0,1434			
2	5	21	6	2005	230,23	5147	85,78	-0,1537			
10	15	21	6	2005	230,16	5637	93,95	-0,1582			
20	33	21	6	2005	230,07	6255	104,25	-0,1641			
10	24	22	6	2005	229,97	7086	118,10	-0,1705			
22	12	22	6	2005	229,87	7794	129,90	-0,1770			
16	7	23	6	2005	229,75	8869	147,82	-0,1847			
19	39	24	6	2005	229,60	10521	175,35	-0,1944			
16	10	25	6	2005	229,50	11752	195,87	-0,2009			
20	6	26	6	2005	229,37	13428	223,80	-0,2093			
19	17	27	6	2005	229,27	14819	246,98	-0,2157			
20	59	28	6	2005	229,18	16361	272,68	-0,2215			
13	34	29	6	2005	229,11	17356	289,27	-0,2261			
21	2	30	6	2005	229,01	19244	320,73	-0,2325			
10	26	1	7	2005	228,96	20048	334,13	-0,2357			
12	18	2	7	2005	228,87	21600	360,00	-0,2416			
20	34	3	7	2005	228,79	23536	392,27	-0,2467			
12	6	4	7	2005	228,73	24468	407,80	-0,2506			
16	42	5	7	2005	228,66	26184	436,40	-0,2551			
20	58	6	7	2005	228,55	27880	464,67	-0,2622			
12	4	7	7	2005	228,54	28786	479,77	-0,2629			
13	35	9	7	2005	228,41	31757	529,28	-0,2713			
21	31	10	7	2005	228,32	33673	561,22	-0,2771			
20	23	11	7	2005	228,22	35045	584,08	-0,2835			
20	40	12	7	2005	228,18	36502	608,37	-0,2861			
14	45	5	8	2005	227,84	70707	1178,45	-0,3081			

Quadro A2.99 Resultados do ensaio de evaporação do provete IMC 3.1T, após tratamento.

Figura A2.99 Ensaio de evaporação do provete IMC 3.1T, após tratamento.

	PROVETE 3.2T											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
11	56	17	6	2005	233,79	0	0,00	0,0000				
12	21	17	6	2005	233,71	25	0,42	-0,0052				
12	43	17	6	2005	233,67	47	0,78	-0,0078				
16	0	17	6	2005	233,46	244	4,07	-0,0213				
20	47	17	6	2005	233,17	531	8,85	-0,0400				
10	17	18	6	2005	232,50	1341	22,35	-0,0833				
22	32	18	6	2005	231,99	2076	34,60	-0,1163				
12	20	19	6	2005	231,45	2904	48,40	-0,1511				
22	7	19	6	2005	231,25	3491	58,18	-0,1641				
10	17	20	6	2005	231,06	4221	70,35	-0,1763				
1	46	21	6	2005	230,88	5150	85,83	-0,1879				
10	10	21	6	2005	230,80	5654	94,23	-0,1931				
20	28	21	6	2005	230,68	6272	104,53	-0,2009				
10	19	22	6	2005	230,60	7103	118,38	-0,2060				
22	8	22	6	2005	230,49	7812	130,20	-0,2131				
16	3	23	6	2005	230,36	8887	148,12	-0,2215				
19	33	24	6	2005	230,19	10537	175,62	-0,2325				
16	4	25	6	2005	230,08	11768	196,13	-0,2396				
20	0	26	6	2005	229,95	13444	224,07	-0,2480				
19	14	27	6	2005	229,86	14838	247,30	-0,2538				
20	55	28	6	2005	229,73	16379	272,98	-0,2622				
13	33	29	6	2005	229,67	17377	289,62	-0,2661				
21	0	30	6	2005	229,57	19264	321,07	-0,2726				
10	24	1	7	2005	229,51	20068	334,47	-0,2764				
12	10	2	7	2005	229,42	21614	360,23	-0,2822				
20	33	3	7	2005	229,32	23557	392,62	-0,2887				
12	2	4	7	2005	229,27	24486	408,10	-0,2919				
16	38	5	7	2005	229,21	26202	436,70	-0,2958				
20	54	6	7	2005	229,13	27898	464,97	-0,3010				
12	0	7	7	2005	229,09	28804	480,07	-0,3036				
13	33	9	7	2005	229,02	31777	529,62	-0,3081				
21	27	10	7	2005	228,96	33691	561,52	-0,3120				
20	19	11	7	2005	228,93	35063	584,38	-0,3139				
20	36	12	7	2005	228,91	36520	608,67	-0,3152				
14	41	5	8	2005	228,85	70725	1178,75	-0,3191				

Quadro A2.100 Resultados do ensaio de evaporação do provete IMC 3.2T, após tratamento.

Figura A2.100 Ensaio de evaporação do provete IMC 3.2T, após tratamento.

	PROVETE 4.1T									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
11	48	17	6	2005	232,36	0	0,00	0,0000		
12	8	17	6	2005	232,34	20	0,33	-0,0013		
12	40	17	6	2005	232,33	52	0,87	-0,0019		
15	57	17	6	2005	232,29	249	4,15	-0,0045		
20	46	17	6	2005	232,28	538	8,97	-0,0052		
10	15	18	6	2005	232,22	1347	22,45	-0,0090		
22	30	18	6	2005	232,16	2082	34,70	-0,0129		
12	19	19	6	2005	232,11	2911	48,52	-0,0161		
22	5	19	6	2005	232,06	3497	58,28	-0,0194		
10	15	20	6	2005	232,01	4227	70,45	-0,0226		
1	42	21	6	2005	231,95	5154	85,90	-0,0265		
10	7	21	6	2005	231,91	5659	94,32	-0,0291		
20	26	21	6	2005	231,87	6278	104,63	-0,0316		
10	17	22	6	2005	231,80	7109	118,48	-0,0362		
22	6	22	6	2005	231,74	7818	130,30	-0,0400		
16	1	23	6	2005	231,66	8893	148,22	-0,0452		
19	28	24	6	2005	231,55	10540	175,67	-0,0523		
16	1	25	6	2005	231,48	11773	196,22	-0,0568		
19	57	26	6	2005	231,36	13449	224,15	-0,0646		
19	12	27	6	2005	231,29	14844	247,40	-0,0691		
20	53	28	6	2005	231,18	16385	273,08	-0,0762		
13	28	29	6	2005	231,12	17380	289,67	-0,0801		
20	58	30	6	2005	231,00	19270	321,17	-0,0878		
10	23	1	7	2005	230,95	20075	334,58	-0,0911		
12	8	2	7	2005	230,88	21620	360,33	-0,0956		
20	32	3	7	2005	230,76	23564	392,73	-0,1033		
12	0	4	7	2005	230,70	24492	408,20	-0,1072		
16	36	5	7	2005	230,57	26208	436,80	-0,1156		
20	52	6	7	2005	230,50	27904	465,07	-0,1201		
11	58	7	7	2005	230,45	28810	480,17	-0,1234		
13	33	9	7	2005	230,27	31785	529,75	-0,1350		
21	25	10	7	2005	230,11	33697	561,62	-0,1453		
20	17	11	7	2005	229,99	35069	584,48	-0,1531		
20	35	12	7	2005	229,87	36527	608,78	-0,1608		
19	49	13	7	2005	229,77	37921	632,02	-0,1673		
20	5	14	7	2005	229,69	39377	656,28	-0,1724		
21	1	15	7	2005	229,55	40873	681,22	-0,1815		
14	48	16	7	2005	229,50	41940	699,00	-0,1847		
11	35	18	7	2005	229,34	44627	743,78	-0,1951		
20	6	19	7	2005	229,24	46578	776,30	-0,2015		
19	23	20	7	2005	229,14	47975	799,58	-0,2080		
11	46	21	7	2005	229,07	48958	815,97	-0,2125		
13	32	22	7	2005	228,98	50504	841,73	-0,2183		
17	2	24	7	2005	228,83	53594	893,23	-0,2280		
12	14	26	7	2005	228,71	56186	936,43	-0,2357		
19	49	27	7	2005	228,64	58081	968,02	-0,2403		
20	19	28	7	2005	228,60	59551	992,52	-0,2428		
14	12	29	7	2005	228,59	60624	1010,40	-0,2435		
13	52	1	8	2005	228,55	64924	1082,07	-0,2461		
12	7	2	8	2005	228,55	66259	1104,32	-0,2461		
18	15	3	8	2005	228,55	68067	1134,45	-0,2461		
11	20	4	8	2005	228,54	69092	1151,53	-0,2467		
14	39	5	8	2005	228,54	70731	1178,85	-0,2467		

Quadro A2.101	Resultados do ensaio de evaporação do provete IMC 4.1T, após tratamento.

Figura A2.101 Ensaio de evaporação do provete IMC 4.1T, após tratamento.

PROVETE 4.2T								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	27	17	6	2005	231,96	0	0,00	0,0000
11	39	17	6	2005	231,94	12	0,20	-0,0013
12	38	17	6	2005	231,94	71	1,18	-0,0013
15	54	17	6	2005	231,93	267	4,45	-0,0019
20	44	17	6	2005	231,90	557	9,28	-0,0039
10	14	18	6	2005	231,84	1367	22,78	-0,0078
22	27	18	6	2005	231,78	2100	35,00	-0,0116
12	18	19	6	2005	231,73	2931	48,85	-0,0149
22	4	19	6	2005	231,69	3517	58,62	-0,0174
10	13	20	6	2005	231,65	4246	70,77	-0,0200
1	37	21	6	2005	231,55	5170	86,17	-0,0265
10	3	21	6	2005	231,54	5676	94,60	-0,0271
20	23	21	6	2005	231,49	6296	104,93	-0,0304
10	14	22	6	2005	231,43	7127	118,78	-0,0342
22	3	22	6	2005	231,37	7836	130,60	-0,0381
15	59	23	6	2005	231,27	8912	148,53	-0,0446
19	24	24	6	2005	231,17	10557	175,95	-0,0510
15	57	25	6	2005	231,10	11790	196,50	-0,0555
19	53	26	6	2005	230,97	13466	224,43	-0,0639
19	10	27	6	2005	230,89	14863	247,72	-0,0691
20	49	28	6	2005	230,76	16402	273,37	-0,0775
13	21	29	6	2005	230,68	17394	289,90	-0,0827
20	51	30	6	2005	230,56	19284	321,40	-0,0904
10	21	1	7	2005	230,51	20094	334,90	-0,0937
12	6	2	7	2005	230,39	21639	360,65	-0,1014
20	30	3	7	2005	230,28	23583	393,05	-0,1085
11	56	4	7	2005	230,21	24509	408,48	-0,1130
16	33	5	7	2005	230,08	26226	437,10	-0,1214
20	49	6	7	2005	229,98	27922	465,37	-0,1279
11	55	7	7	2005	229,93	28828	480,47	-0,1311
13	31	9	7	2005	229,69	31804	530,07	-0,1466
21	22	10	7	2005	229,52	33715	561,92	-0,1576
20	14	11	7	2005	229,39	35087	584,78	-0,1660
20	32	12	7	2005	229,27	36545	609,08	-0,1737
19	47	13	7	2005	229,16	37940	632,33	-0,1808
20	1	14	7	2005	229,05	39394	656,57	-0,1879
20	58	15	7	2005	228,95	40891	681,52	-0,1944
14	44	16	7	2005	228,88	41957	699,28	-0,1989
11	27	18	7	2005	228,72	44640	744,00	-0,2093
20	3	19	7	2005	228,61	46596	776,60	-0,2164
19	20	20	7	2005	228,53	47993	799,88	-0,2215
11	44	21	7	2005	228,47	48977	816,28	-0,2254
13	29	22	7	2005	228,38	50522	842,03	-0,2312
17	0	24	7	2005	228,31	53613	893,55	-0,2357
12	11	26	7	2005	228,26	56204	936,73	-0,2390
19	47	27	7	2005	228,23	58100	968,33	-0,2409
20	16	28	7	2005	228,19	59569	<u>992,</u> 82	-0,2435
14	8	29	7	2005	228,19	60641	1010,68	-0,2435
13	49	1	8	2005	228,19	64942	1082,37	-0,2435
12	5	2	8	2005	228,19	66278	1104,63	-0,2435
18	11	3	8	2005	228,19	68084	1134,73	-0,2435
11	17	4	8	2005	228,19	69110	1151,83	-0,2435
14	35	5	8	2005	228,19	70748	1179,13	-0,2435

Quadro A2.102	Resultados do ensaio	de evaporação	do provete IN	/IC 4.2T, após	s tratamento.

Figura A2.102 Ensaio de evaporação do provete IMC 4.2T, após tratamento.

PROVETE 4.3T								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	29	17	6	2005	234,48	0	0,00	0,0000
11	39	17	6	2005	234,47	10	0,17	-0,0006
12	38	17	6	2005	234,44	69	1,15	-0,0026
15	55	17	6	2005	234,41	266	4,43	-0,0045
20	44	17	6	2005	234,38	555	9,25	-0,0065
10	14	18	6	2005	234,28	1365	22,75	-0,0129
22	27	18	6	2005	234,21	2098	34,97	-0,0174
12	18	19	6	2005	234,14	2929	48,82	-0,0220
22	4	19	6	2005	234,07	3515	58,58	-0,0265
10	13	20	6	2005	234.00	4244	70.73	-0.0310
1	38	21	6	2005	233.91	5169	86,15	-0.0368
10	4	21	6	2005	233.87	5675	94.58	-0.0394
20	24	21	6	2005	233.80	6295	104.92	-0.0439
10	15	22	6	2005	233 72	7126	118 77	-0 0491
22	4	22	6	2005	233,72	7835	130 58	-0.0536
15	50	22	6	2005	233,03	8910	148 50	-0,0330
10	25	23	6	2005	233,47	10556	140,50	-0,0032
17	2J 50	24	0	2005	233,30	11700	175,95	-0,0710
10	50	25	0	2005	233,20	12445	224.42	-0,0788
19	10	20	8	2003	233,12	13403	224,42	-0,0878
19	10	27	0	2005	232,98	14801	247,08	-0,0969
20	50	28	6	2005	232,85	16401	2/3,35	-0,1053
13	21	29	6	2005	232,76	1/392	289,87	-0,1111
20	51	30	6	2005	232,61	19282	321,37	-0,1208
10	21	1	/	2005	232,54	20092	334,87	-0,1253
12	6	2	/	2005	232,40	21637	360,62	-0,1343
20	30	3	7	2005	232,24	23581	393,02	-0,1447
11	57	4	7	2005	232,16	24508	408,47	-0,1498
16	33	5	7	2005	232,02	26224	437,07	-0,1589
20	50	6	7	2005	231,87	27921	465,35	-0,1686
11	56	7	7	2005	231,82	28827	480,45	-0,1718
13	31	9	7	2005	231,55	31802	530,03	-0,1892
21	22	10	7	2005	231,38	33713	561,88	-0,2002
20	14	11	7	2005	231,27	35085	584,75	-0,2073
20	32	12	7	2005	231,16	36543	609,05	-0,2144
19	47	13	7	2005	231,07	37938	632,30	-0,2202
20	1	14	7	2005	230,98	39392	656,53	-0,2261
20	58	15	7	2005	230,94	40889	681,48	-0,2286
14	45	16	7	2005	230,91	41956	699,27	-0,2306
11	27	18	7	2005	230,85	44638	743,97	-0,2345
20	3	19	7	2005	230,83	46594	776,57	-0,2357
19	20	20	7	2005	230,81	47991	799,85	-0,2370
11	44	21	7	2005	230,81	48975	816,25	-0,2370
13	30	22	7	2005	230,80	50521	842,02	-0,2377
17	0	24	7	2005	230,80	53611	893,52	-0,2377
12	12	26	7	2005	230,81	56203	936,72	-0,2370
19	47	27	7	2005	230,80	58098	968,30	-0,2377
20	17	28	7	2005	230,80	59568	992,80	-0,2377
14	9	29	7	2005	230,80	60640	1010,67	-0,2377
13	50	1	8	2005	230,80	64941	1082,35	-0,2377
12	5	2	8	2005	230,79	66276	1104,60	-0,2383
18	12	3	8	2005	230,79	68083	1134,72	-0,2383
11	18	4	8	2005	230,79	69109	1151,82	-0,2383
14	36	5	8	2005	230.79	70747	1179.12	-0.2383

Quadro A2.103 Resultados do ensaio de evaporação do provete IMC 4.3T, após tratamento.

Figura A2.103 Ensaio de evaporação do provete IMC 4.3T, após tratamento.
PROVETE 4.4T									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	50	17	6	2005	234,90	0	0,00	0,0000	
12	8	17	6	2005	234,87	18	0,30	-0,0019	
12	40	17	6	2005	234,86	50	0,83	-0,0026	
15	58	17	6	2005	234,84	248	4,13	-0,0039	
20	46	17	6	2005	234,81	536	8,93	-0,0058	
10	15	18	6	2005	234,73	1345	22,42	-0,0110	
22	30	18	6	2005	234,65	2080	34,67	-0,0161	
12	19	19	6	2005	234,59	2909	48,48	-0,0200	
22	5	19	6	2005	234,53	3495	58,25	-0,0239	
10	15	20	6	2005	234,46	4225	70,42	-0,0284	
1	42	21	6	2005	234,37	5152	85,87	-0,0342	
10	8	21	6	2005	234,34	5658	94,30	-0,0362	
20	27	21	6	2005	234,28	6277	104,62	-0,0400	
22	7	22	6	2005	234,13	7817	130,28	-0,0497	
16	2	23	6	2005	234,01	8892	148,20	-0,0575	
19	30	24	6	2005	233,89	10540	175,67	-0,0652	
16	2	25	6	2005	233,78	11772	196,20	-0,0723	
19	58	26	6	2005	233,61	13448	224,13	-0,0833	
19	13	27	6	2005	233,52	14843	247,38	-0,0891	
20	53	28	6	2005	233,37	16383	273,05	-0,0988	
13	28	29	6	2005	233,29	17378	289,63	-0,1040	
20	58	30	6	2005	233,13	19268	321,13	-0,1143	
10	23	1	7	2005	233,09	20073	334,55	-0,1169	
12	9	2	7	2005	232,97	21619	360,32	-0,1247	
20	32	3	7	2005	232,82	23562	392,70	-0,1343	
12	1	4	7	2005	232,73	24491	408,18	-0,1402	
16	36	5	7	2005	232,59	26206	436,77	-0,1492	
20	52	6	7	2005	232,48	27902	465,03	-0,1563	
11	59	7	7	2005	232,43	28809	480,15	-0,1595	
13	33	9	7	2005	232,18	31783	529,72	-0,1757	
21	26	10	7	2005	231,97	33696	561,60	-0,1892	
20	17	11	7	2005	231,84	35067	584,45	-0,1976	
20	35	12	7	2005	231,73	36525	608,75	-0,2047	
19	50	13	7	2005	231,63	37920	632,00	-0,2112	
20	6	14	7	2005	231,55	39376	656,27	-0,2164	
21	1	15	7	2005	231,48	40871	681,18	-0,2209	
14	48	16	7	2005	231,46	41938	698,97	-0,2222	
11	35	18	7	2005	231,37	44625	743,75	-0,2280	
20	6	19	7	2005	231,35	46576	776,27	-0,2293	
19	23	20	7	2005	231,33	47973	799,55	-0,2306	
11	46	21	7	2005	231,33	48956	815,93	-0,2306	
13	32	22	7	2005	231,30	50502	841,70	-0,2325	
17	2	24	7	2005	231,25	53592	893,20	-0,2357	
12	15	26	7	2005	231,25	56185	936,42	-0,2357	
19	50	27	7	2005	231,25	58080	968,00	-0,2357	
20	20	28	7	2005	231,25	59550	992,50	-0,2357	
14	12	29	7	2005	231,25	60622	1010,37	-0,2357	
13	53	1	8	2005	231,25	64923	1082,05	-0,2357	
12	8	2	8	2005	231,25	66258	1104,30	-0,2357	
18	15	3	8	2005	231,25	68065	1134,42	-0,2357	
11	21	4	8	2005	231,25	69091	1151,52	-0,2357	
14	39	5	8	2005	231.25	70729	1178.82	-0.2357	

Quadro A2.104 Resultados do ensaio de evaporação do provete IMC 4.4T, após tratamento.

Figura A2.104 Ensaio de evaporação do provete IMC 4.4T, após tratamento.

PROVETE 5.1T										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
11	51	17	6	2005	233,51	0	0,00	0,0000		
12	8	17	6	2005	233,48	17	0,28	-0,0019		
12	40	17	6	2005	233,47	49	0,82	-0,0026		
15	58	17	6	2005	233,45	247	4,12	-0,0039		
20	46	17	6	2005	233,43	535	8,92	-0,0052		
10	15	18	6	2005	233,37	1344	22,40	-0,0090		
22	30	18	6	2005	233,31	2079	34,65	-0,0129		
12	19	19	6	2005	233,26	2908	48,47	-0,0161		
22	5	19	6	2005	233,20	3494	58,23	-0,0200		
10	15	20	6	2005	233,15	4224	70,40	-0,0233		
1	43	21	6	2005	233,07	5152	85,87	-0,0284		
10	8	21	6	2005	233,05	5657	94,28	-0,0297		
20	27	21	6	2005	233,00	6276	104,60	-0,0329		
10	18	22	6	2005	232,94	7107	118,45	-0,0368		
22	7	22	6	2005	232,88	7816	130,27	-0,0407		
16	2	23	6	2005	232,77	8891	148,18	-0,0478		
19	31	24	6	2005	232,65	10540	175,67	-0,0555		
16	3	25	6	2005	232,57	11772	196,20	-0,0607		
19	59	26	6	2005	232,44	13448	224,13	-0,0691		
19	13	27	6	2005	232,33	14842	247,37	-0,0762		
20	54	28	6	2005	232,23	16383	273,05	-0,0827		
13	33	29	6	2005	232,14	17382	289,70	-0,0885		
20	58	30	6	2005	232,02	19267	321,12	-0,0962		
10	21	1	7	2005	231,96	20070	334,50	-0,1001		
12	9	2	7	2005	231,86	21618	360,30	-0,1066		
20	32	3	7	2005	231,74	23561	392,68	-0,1143		
12	1	4	7	2005	231,65	24490	408,17	-0,1201		
16	37	5	7	2005	231.52	26206	436.77	-0,1285		
20	53	6	7	2005	231,43	27902	465,03	-0,1343		
11	59	7	7	2005	231.38	28808	480,13	-0,1376		
13	33	9	7	2005	231,13	31782	529,70	-0,1537		
21	26	10	7	2005	230,95	33695	561.58	-0,1653		
20	18	11	7	2005	230,86	35067	584,45	-0,1712		
20	35	12	7	2005	230,67	36524	608,73	-0,1834		
19	50	13	7	2005	230.60	37919	631.98	-0,1879		
20	7	14	7	2005	230,44	39376	656.27	-0,1983		
21	2	15	7	2005	230.31	40871	681.18	-0,2067		
14	48	16	7	2005	230.26	41937	698,95	-0,2099		
11	35	18	7	2005	230,09	44624	743,73	-0,2209		
20	7	19	7	2005	229,97	46576	776,27	-0,2286		
19	24	20	7	2005	229,90	47973	799,55	-0,2332		
11	46	21	7	2005	229,84	48955	815.92	-0,2370		
13	33	22	7	2005	229.78	50502	841.70	-0,2409		
17	2	24	7	2005	229.70	53591	893.18	-0.2461		
12	15	26	7	2005	229.65	56184	936,40	-0,2493		
19	50	20	7	2005	229.63	58079	967.98	-0.2506		
20	21	28	7	2005	229.63	59550	992.50	-0.2506		
14	13	29	7	2005	229.62	60622	1010.37	-0,2512		
13	53	1	8	2005	229.60	64922	1082.03	-0.2525		
12	8	2	8	2005	229.60	66257	1104.28	-0.2525		
18	16	3	8	2005	229.60	68065	1134,42	-0.2525		
11	21	4	8	2005	229.60	69090	1151.50	-0.2525		
14	40	5	8	2005	229.59	70729	1178.82	-0,2532		

Quadro A2.105	Resultados do ensaio de evaporação do provete IMC 5.1T, após tratamento.

Figura A2.105 Ensaio de evaporação do provete IMC 5.1T, após tratamento.

PROVETE 5.2T									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	31	17	6	2005	231,89	0	0,00	0,0000	
11	39	17	6	2005	231,87	8	0,13	-0,0013	
12	38	17	6	2005	231,83	67	1,12	-0,0039	
15	55	17	6	2005	231,82	264	4,40	-0,0045	
20	44	17	6	2005	231,82	553	9,22	-0,0045	
10	14	18	6	2005	231,70	1363	22,72	-0,0123	
22	27	18	6	2005	231,63	2096	34,93	-0,0168	
12	18	19	6	2005	231,57	2927	48,78	-0,0207	
22	4	19	6	2005	231,50	3513	58,55	-0,0252	
10	13	20	6	2005	231,44	4242	70,70	-0,0291	
1	39	21	6	2005	231,35	5168	86,13	-0,0349	
10	5	21	6	2005	231,31	5674	94,57	-0,0375	
20	24	21	6	2005	231,25	6293	104,88	-0,0413	
10	15	22	6	2005	231,17	7124	118,73	-0,0465	
22	4	22	6	2005	231,10	7833	130,55	-0,0510	
16	0	23	6	2005	230,98	8909	148,48	-0,0588	
19	25	24	6	2005	230,83	10554	175,90	-0,0685	
15	58	25	6	2005	230,73	11787	196,45	-0,0749	
19	55	26	6	2005	230,56	13464	224,40	-0,0859	
19	11	27	6	2005	230,49	14860	247,67	-0,0904	
20	50	28	6	2005	230,32	16399	273,32	-0,1014	
13	22	29	6	2005	230,23	17391	289,85	-0,1072	
20	52	30	6	2005	230,07	19281	321,35	-0,1175	
10	21	1	7	2005	230,01	20090	334,83	-0,1214	
12	6	2	7	2005	229,87	21635	360,58	-0,1305	
20	30	3	7	2005	229,72	23579	392,98	-0,1402	
11	57	4	7	2005	229,64	24506	408,43	-0,1453	
16	34	5	7	2005	229,50	26223	437,05	-0,1544	
20	50	6	7	2005	229,33	27919	465,32	-0,1653	
11	56	7	7	2005	229,27	28825	480,42	-0,1692	
21	23	10	7	2005	228,81	33712	561,87	-0,1989	
20	15	11	7	2005	228,65	35084	584,73	-0,2093	
20	33	12	7	2005	228,52	36542	609,03	-0,2177	
19	48	13	7	2005	228,39	37937	632,28	-0,2261	
20	2	14	7	2005	228,27	39391	656,52	-0,2338	
20	59	15	/	2005	228,14	40888	681,47	-0,2422	
14	45	16	/	2005	228,06	41954	699,23	-0,2474	
11	28	18	/	2005	227,92	44637	743,95	-0,2564	
20	4	19	/	2005	227,84	46593	776,55	-0,2616	
19	21	20	/	2005	227,80	47990	/99,83	-0,2642	
11	44	21	/	2005	227,78	48973	816,22	-0,2655	
13	30	22	/	2005	227,77	50519	841,98	-0,2661	
17	10	24	/	2005	227,75	53610	893,50	-0,2674	
12	12	20	/	2005	227,75	56201	936,68	-0,2674	
19	47	27	/	2005	221,15	58096	908,27	-0,2674	
20	17	28	/	2005	221,75	59566	992,77	-0,2674	
14	9	29	/	2005	221,14	00038	1000.00	-0,2680	
13	50	1 1	8	2005	221,13	04939 22075	1104 50	-0,2087	
12	6	2	8	2005	221,13	66275	1104,58	-0,2687	
18	12	3	8	2005	221,13	6808 I	1154,68	-0,2687	
14	18	<u></u> 4	0	2005	221,12	707/5	1170 00	-0,2093	
141			0	2000	221.12	10/43	11/7,00	-0.2073	

Quadro A2.106 Resultados do ensaio de evaporação do provete IMC 5.2T, após tratamento.

Figura A2.106 Ensaio de evaporação do provete IMC 5.2T, após tratamento.

			F	ROVETE 5.3	Г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
12	20	17	6	2005	232,81	0	0,00	0,0000
12	35	17	6	2005	232,76	15	0,25	-0,0032
13	6	17	6	2005	232,73	46	0,77	-0,0052
16	8	17	6	2005	232,60	228	3,80	-0,0136
20	48	17	6	2005	232,41	508	8,47	-0,0258
10	18	18	6	2005	231,85	1318	21,97	-0,0620
22	33	18	6	2005	231,40	2053	34,22	-0,0911
12	22	19	6	2005	230,75	2882	48,03	-0,1330
22	8	19	6	2005	230,47	3468	57,80	-0,1511
10	19	20	6	2005	230,24	4199	69,98	-0,1660
2	6	21	6	2005	230,07	5146	85,77	-0,1770
10	15	21	6	2005	229,99	5635	93,92	-0,1821
20	33	21	6	2005	229,89	6253	104,22	-0,1886
10	24	22	6	2005	229,77	7084	118,07	-0,1963
22	12	22	6	2005	229,64	7792	129,87	-0,2047
16	7	23	6	2005	229,53	8867	147,78	-0,2118
19	40	24	6	2005	229,35	10520	175,33	-0,2235
16	11	25	6	2005	229,25	11751	195,85	-0,2299
20	7	26	6	2005	229,10	13427	223,78	-0,2396
19	17	27	6	2005	229,01	14817	246,95	-0,2454
21	0	28	6	2005	228,89	16360	272,67	-0,2532
13	36	29	6	2005	228,82	17356	289,27	-0,2577
21	2	30	6	2005	228,73	19242	320,70	-0,2635
10	26	1	7	2005	228,67	20046	334,10	-0,2674
12	18	2	7	2005	228,59	21598	359,97	-0,2726
20	34	3	7	2005	228,48	23534	392,23	-0,2797
12	7	4	7	2005	228,45	24467	407,78	-0,2816
16	43	5	7	2005	228,37	26183	436,38	-0,2868
20	59	6	7	2005	228,31	27879	464,65	-0,2906
12	5	7	7	2005	228,28	28785	479,75	-0,2926
13	35	9	7	2005	228,15	31755	529,25	-0,3010
21	32	10	7	2005	228,13	33672	561,20	-0,3023
20	23	11	7	2005	228,12	35043	584,05	-0,3029
20	41	12	7	2005	228,11	36501	608,35	-0,3036
14	45	5	8	2005	228,11	70705	1178,42	-0,3036

Quadro A2.107 Resultados do ensaio de evaporação do provete IMC 5.3T, após tratamento.

Figura A2.107 Ensaio de evaporação do provete IMC 5.3T, após tratamento.

			F	PROVETE 5.4	т			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	58	17	6	2005	231,87	0	0,00	0,0000
12	21	17	6	2005	231,80	23	0,38	-0,0045
12	44	17	6	2005	231,77	46	0,77	-0,0065
16	0	17	6	2005	231,60	242	4,03	-0,0174
20	47	17	6	2005	231,40	529	8,82	-0,0304
10	17	18	6	2005	230,79	1339	22,32	-0,0698
22	32	18	6	2005	230,36	2074	34,57	-0,0975
12	20	19	6	2005	229,78	2902	48,37	-0,1350
22	7	19	6	2005	229,36	3489	58,15	-0,1621
10	17	20	6	2005	228,98	4219	70,32	-0,1867
1	47	21	6	2005	228,71	5149	85,82	-0,2041
10	10	21	6	2005	228,61	5652	94,20	-0,2106
20	29	21	6	2005	228,48	6271	104,52	-0,2189
10	20	22	6	2005	228,35	7102	118,37	-0,2273
22	8	22	6	2005	228,22	7810	130,17	-0,2357
16	4	23	6	2005	228,08	8886	148,10	-0,2448
19	34	24	6	2005	227,91	10536	175,60	-0,2558
16	5	25	6	2005	227,81	11767	196,12	-0,2622
20	1	26	6	2005	227,67	13443	224,05	-0,2713
19	14	27	6	2005	227,58	14836	247,27	-0,2771
20	56	28	6	2005	227,47	16378	272,97	-0,2842
13	33	29	6	2005	227,42	17375	289,58	-0,2874
21	0	30	6	2005	227,32	19262	321,03	-0,2939
10	24	1	7	2005	227,27	20066	334,43	-0,2971
12	10	2	7	2005	227,13	21612	360,20	-0,3061
20	33	3	7	2005	227,07	23555	392,58	-0,3100
12	3	4	7	2005	227,04	24485	408,08	-0,3120
16	38	5	7	2005	226,98	26200	436,67	-0,3158
20	54	6	7	2005	226,94	27896	464,93	-0,3184
12	1	7	7	2005	226,92	28803	480,05	-0,3197
13	33	9	7	2005	226,88	31775	529,58	-0,3223
21	28	10	7	2005	226,84	33690	561,50	-0,3249
20	19	11	7	2005	226,84	35061	584,35	-0,3249
20	37	12	7	2005	226,87	36519	608,65	-0,3229
14	41	5	8	2005	226,85	70723	1178,72	-0,3242

Quadro A2.108	Resultados do er	nsaio de evaporação	do provete IMC 5.4T	, após tratamento.
---------------	------------------	---------------------	---------------------	--------------------

Figura A2.108 Ensaio de evaporação do provete IMC 5.4T, após tratamento.

			F	ROVETE 6.1	Г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
12	24	17	6	2005	236,74	0	0,00	0,0000
12	41	17	6	2005	236,69	17	0,28	-0,0032
13	8	17	6	2005	236,66	44	0,73	-0,0052
16	12	17	6	2005	236,46	228	3,80	-0,0181
20	51	17	6	2005	236,20	507	8,45	-0,0349
10	19	18	6	2005	235,60	1315	21,92	-0,0736
22	34	18	6	2005	235,32	2050	34,17	-0,0917
12	23	19	6	2005	235,15	2879	47,98	-0,1027
22	9	19	6	2005	235,06	3465	57,75	-0,1085
10	22	20	6	2005	234,95	4198	69,97	-0,1156
1	53	21	6	2005	234,86	5129	85,48	-0,1214
10	16	21	6	2005	234,81	5632	93,87	-0,1247
20	34	21	6	2005	234,75	6250	104,17	-0,1285
10	25	22	6	2005	234,67	7081	118,02	-0,1337
22	13	22	6	2005	234,59	7789	129,82	-0,1389
16	14	23	6	2005	234,52	8870	147,83	-0,1434
19	40	24	6	2005	234,39	10516	175,27	-0,1518
16	12	25	6	2005	234,32	11748	195,80	-0,1563
20	8	26	6	2005	234,22	13424	223,73	-0,1628
19	18	27	6	2005	234,16	14814	246,90	-0,1666
21	1	28	6	2005	234,06	16357	272,62	-0,1731
13	36	29	6	2005	234,03	17352	289,20	-0,1750
21	4	30	6	2005	233,95	19240	320,67	-0,1802
10	28	1	7	2005	233,93	20044	334,07	-0,1815
12	20	2	7	2005	233,85	21596	359,93	-0,1867
20	36	3	7	2005	233,78	23532	392,20	-0,1912
12	8	4	7	2005	233,73	24464	407,73	-0,1944
16	43	5	7	2005	233,68	26179	436,32	-0,1976
20	59	6	7	2005	233,61	27875	464,58	-0,2022
12	6	7	7	2005	233,61	28782	479,70	-0,2022
13	36	9	7	2005	233,54	31752	529,20	-0,2067
21	32	10	7	2005	233,46	33668	561,13	-0,2118
20	24	11	7	2005	233,44	35040	584,00	-0,2131
20	57	12	7	2005	233,43	36513	608,55	-0,2138
14	45	5	8	2005	233,39	70701	1178,35	-0,2164

Quadro A2.109 Resultados do ensaio de evaporação do provete IMC 6.1T, após tratamento.

Figura A2.109 Ensaio de evaporação do provete IMC 6.1T, após tratamento.

	PROVETE 6.2T											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	0	17	6	2005	234,84	0	0,00	0,0000				
12	21	17	6	2005	234,76	21	0,35	-0,0052				
12	44	17	6	2005	234,74	44	0,73	-0,0065				
16	1	17	6	2005	234,62	241	4,02	-0,0142				
20	47	17	6	2005	234,46	527	8,78	-0,0245				
10	17	18	6	2005	233,96	1337	22,28	-0,0568				
22	32	18	6	2005	233,59	2072	34,53	-0,0807				
12	20	19	6	2005	233,26	2900	48,33	-0,1020				
22	7	19	6	2005	233,13	3487	58,12	-0,1104				
10	17	20	6	2005	233,01	4217	70,28	-0,1182				
1	47	21	6	2005	232,89	5147	85,78	-0,1259				
10	11	21	6	2005	232,85	5651	94,18	-0,1285				
20	29	21	6	2005	232,77	6269	104,48	-0,1337				
10	20	22	6	2005	232,69	7100	118,33	-0,1389				
22	9	22	6	2005	232,61	7809	130,15	-0,1440				
16	4	23	6	2005	232,51	8884	148,07	-0,1505				
19	34	24	6	2005	232,41	10534	175,57	-0,1569				
16	5	25	6	2005	232,33	11765	196,08	-0,1621				
20	2	26	6	2005	232,24	13442	224,03	-0,1679				
19	15	27	6	2005	232,16	14835	247,25	-0,1731				
20	56	28	6	2005	232,09	16376	272,93	-0,1776				
13	33	29	6	2005	232,05	17373	289,55	-0,1802				
21	0	30	6	2005	231,98	19260	321,00	-0,1847				
10	24	1	7	2005	231,96	20064	334,40	-0,1860				
12	11	2	7	2005	231,89	21611	360,18	-0,1905				
20	33	3	7	2005	231,82	23553	392,55	-0,1951				
12	3	4	7	2005	231,78	24483	408,05	-0,1976				
16	39	5	7	2005	231,73	26199	436,65	-0,2009				
20	55	6	7	2005	231,69	27895	464,92	-0,2034				
12	1	7	7	2005	231,64	28801	480,02	-0,2067				
13	33	9	7	2005	231,59	31773	529,55	-0,2099				
21	28	10	7	2005	231,54	33688	561,47	-0,2131				
20	19	11	7	2005	231,51	35059	584,32	-0,2151				
20	37	12	7	2005	231,51	36517	608,62	-0,2151				
14	41	5	8	2005	231,48	70721	1178,68	-0,2170				

Quadro A2.110 Resultados do ensaio de evaporação do provete IMC 6.2T, após tratamento.

Figura A2.110 Ensaio de evaporação do provete IMC 6.2T, após tratamento.

PROVETE 6.3T										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
12	26	17	6	2005	239,05	0	0,00	0,0000		
12	41	17	6	2005	238,99	15	0,25	-0,0039		
13	8	17	6	2005	238,94	42	0,70	-0,0071		
16	12	17	6	2005	238,71	226	3,77	-0,0220		
20	51	17	6	2005	238,41	505	8,42	-0,0413		
10	19	18	6	2005	237,91	1313	21,88	-0,0736		
22	34	18	6	2005	237,73	2048	34,13	-0,0853		
12	23	19	6	2005	237,58	2877	47,95	-0,0949		
22	9	19	6	2005	237,49	3463	57,72	-0,1008		
10	22	20	6	2005	237,38	4196	69,93	-0,1079		
1	54	21	6	2005	237,29	5128	85,47	-0,1137		
10	16	21	6	2005	237,26	5630	93,83	-0,1156		
20	34	21	6	2005	237,20	6248	104,13	-0,1195		
10	25	22	6	2005	237,12	7079	117,98	-0,1247		
22	13	22	6	2005	237,05	7787	129,78	-0,1292		
16	14	23	6	2005	236,96	8868	147,80	-0,1350		
19	41	24	6	2005	236,84	10515	175,25	-0,1427		
16	13	25	6	2005	236,76	11747	195,78	-0,1479		
20	9	26	6	2005	236,64	13423	223,72	-0,1557		
19	18	27	6	2005	236,58	14812	246,87	-0,1595		
21	1	28	6	2005	236,47	16355	272,58	-0,1666		
13	36	29	6	2005	236,43	17350	289,17	-0,1692		
21	4	30	6	2005	236,36	19238	320,63	-0,1737		
10	28	1	7	2005	236,33	20042	334,03	-0,1757		
12	20	2	7	2005	236,24	21594	359,90	-0,1815		
20	36	3	7	2005	236,16	23530	392,17	-0,1867		
12	8	4	7	2005	236,13	24462	407,70	-0,1886		
16	44	5	7	2005	236,07	26178	436,30	-0,1925		
21	0	6	7	2005	236,02	27874	464,57	-0,1957		
12	7	7	7	2005	235,99	28781	479,68	-0,1976		
13	36	9	7	2005	235,93	31750	529,17	-0,2015		
21	33	10	7	2005	235,89	33667	561,12	-0,2041		
20	24	11	7	2005	235,84	35038	583,97	-0,2073		
20	58	12	7	2005	235,87	36512	608,53	-0,2054		
14	46	5	8	2005	235,85	70700	1178,33	-0,2067		

Quadro A2.111 Resultados do ensaio de evaporação do provete IMC 6.3T, após tratamento.

Figura A2.111 Ensaio de evaporação do provete IMC 6.3T, após tratamento.

			F	PROVETE 7.1	Г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
12	4	17	6	2005	235,80	0	0,00	0,0000
12	22	17	6	2005	235,75	18	0,30	-0,0032
12	44	17	6	2005	235,71	40	0,67	-0,0058
16	1	17	6	2005	235,57	237	3,95	-0,0149
20	47	17	6	2005	235,39	523	8,72	-0,0265
10	17	18	6	2005	234,84	1333	22,22	-0,0620
22	32	18	6	2005	234,45	2068	34,47	-0,0872
12	20	19	6	2005	234,03	2896	48,27	-0,1143
22	7	19	6	2005	233,87	3483	58,05	-0,1247
10	17	20	6	2005	233,75	4213	70,22	-0,1324
1	48	21	6	2005	233,62	5144	85,73	-0,1408
10	12	21	6	2005	233,57	5648	94,13	-0,1440
20	30	21	6	2005	233,50	6266	104,43	-0,1486
10	21	22	6	2005	233,41	7097	118,28	-0,1544
22	9	22	6	2005	233,35	7805	130,08	-0,1582
16	4	23	6	2005	233,24	8880	148,00	-0,1653
19	35	24	6	2005	233,12	10531	175,52	-0,1731
16	6	25	6	2005	233,05	11762	196,03	-0,1776
20	2	26	6	2005	232,95	13438	223,97	-0,1841
19	15	27	6	2005	232,86	14831	247,18	-0,1899
20	57	28	6	2005	232,79	16373	272,88	-0,1944
13	33	29	6	2005	232,75	17369	289,48	-0,1970
21	0	30	6	2005	232,65	19256	320,93	-0,2034
10	24	1	7	2005	232,62	20060	334,33	-0,2054
12	11	2	7	2005	232,56	21607	360,12	-0,2093
20	33	3	7	2005	232,49	23549	392,48	-0,2138
12	4	4	7	2005	232,42	24480	408,00	-0,2183
16	39	5	7	2005	232,38	26195	436,58	-0,2209
20	56	6	7	2005	232,35	27892	464,87	-0,2228
12	1	7	7	2005	232,29	28797	479,95	-0,2267
13	33	9	7	2005	232,28	31769	529,48	-0,2273
21	28	10	7	2005	232,25	33684	561,40	-0,2293
20	20	11	7	2005	232,22	35056	584,27	-0,2312
20	38	12	7	2005	232,22	36514	608,57	-0,2312
14	42	5	8	2005	232,22	70718	1178,63	-0,2312

Quadro A2.112 Resultados do ensaio de evaporação do provete IMC 7.1T, após tratamento.

Figura A2.112 Ensaio de evaporação do provete IMC 7.1T, após tratamento.

			F	PROVETE 7.2	Г			
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
12	27	17	6	2005	236,93	0	0,00	0,0000
12	42	17	6	2005	236,90	15	0,25	-0,0019
13	9	17	6	2005	236,83	42	0,70	-0,0065
16	12	17	6	2005	236,63	225	3,75	-0,0194
20	51	17	6	2005	236,35	504	8,40	-0,0375
10	19	18	6	2005	235,68	1312	21,87	-0,0807
22	34	18	6	2005	235,45	2047	34,12	-0,0956
12	23	19	6	2005	235,31	2876	47,93	-0,1046
22	9	19	6	2005	235,23	3462	57,70	-0,1098
10	22	20	6	2005	235,14	4195	69,92	-0,1156
1	55	21	6	2005	235,05	5128	85,47	-0,1214
10	17	21	6	2005	235,02	5630	93,83	-0,1234
20	35	21	6	2005	234,94	6248	104,13	-0,1285
10	26	22	6	2005	234,88	7079	117,98	-0,1324
22	14	22	6	2005	234,81	7787	129,78	-0,1369
16	14	23	6	2005	234,74	8867	147,78	-0,1414
19	42	24	6	2005	234,66	10515	175,25	-0,1466
16	13	25	6	2005	234,56	11746	195,77	-0,1531
20	9	26	6	2005	234,45	13422	223,70	-0,1602
19	19	27	6	2005	234,38	14812	246,87	-0,1647
21	1	28	6	2005	234,29	16354	272,57	-0,1705
13	36	29	6	2005	234,24	17349	289,15	-0,1737
21	4	30	6	2005	234,18	19237	320,62	-0,1776
10	28	1	7	2005	234,15	20041	334,02	-0,1796
12	20	2	7	2005	234,07	21593	359,88	-0,1847
20	36	3	7	2005	234,00	23529	392,15	-0,1892
12	8	4	7	2005	233,97	24461	407,68	-0,1912
16	44	5	7	2005	233,88	26177	436,28	-0,1970
21	0	6	7	2005	233,83	27873	464,55	-0,2002
12	7	7	7	2005	233,81	28780	479,67	-0,2015
13	36	9	7	2005	233,75	31749	529,15	-0,2054
21	33	10	7	2005	233,71	33666	561,10	-0,2080
20	25	11	7	2005	233,70	35038	583,97	-0,2086
20	58	12	7	2005	233,68	36511	608,52	-0,2099
14	46	5	8	2005	233,67	70699	1178,32	-0,2106

Quadro A2.113 Resultados do ensaio de evaporação do provete IMC 7.2T, após tratamento.

Figura A2.113 Ensaio de evaporação do provete IMC 7.2T, após tratamento.

PROVETE 7.3T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	6	17	6	2005	236,56	0	0,00	0,0000				
12	22	17	6	2005	236,53	16	0,27	-0,0019				
12	45	17	6	2005	236,46	39	0,65	-0,0065				
16	2	17	6	2005	236,34	236	3,93	-0,0142				
20	47	17	6	2005	236,25	521	8,68	-0,0200				
10	27	18	6	2005	235,49	1341	22,35	-0,0691				
22	32	18	6	2005	235,16	2066	34,43	-0,0904				
12	20	19	6	2005	234,91	2894	48,23	-0,1066				
22	7	19	6	2005	234,80	3481	58,02	-0,1137				
10	17	20	6	2005	234,70	4211	70,18	-0,1201				
1	49	21	6	2005	234,59	5143	85,72	-0,1272				
10	12	21	6	2005	234,55	5646	94,10	-0,1298				
20	30	21	6	2005	234,50	6264	104,40	-0,1330				
10	21	22	6	2005	234,42	7095	118,25	-0,1382				
22	10	22	6	2005	234,35	7804	130,07	-0,1427				
16	5	23	6	2005	234,26	8879	147,98	-0,1486				
19	36	24	6	2005	234,13	10530	175,50	-0,1569				
16	7	25	6	2005	234,10	11761	196,02	-0,1589				
20	3	26	6	2005	234,02	13437	223,95	-0,1641				
19	16	27	6	2005	233,97	14830	247,17	-0,1673				
20	57	28	6	2005	233,87	16371	272,85	-0,1737				
13	33	29	6	2005	233,83	17367	289,45	-0,1763				
21	0	30	6	2005	233,75	19254	320,90	-0,1815				
10	24	1	7	2005	233,74	20058	334,30	-0,1821				
12	12	2	7	2005	233,67	21606	360,10	-0,1867				
20	33	3	7	2005	233,60	23547	392,45	-0,1912				
12	4	4	7	2005	233,56	24478	407,97	-0,1938				
16	40	5	7	2005	233,51	26194	436,57	-0,1970				
20	56	6	7	2005	233,45	27890	464,83	-0,2009				
12	2	7	7	2005	233,41	28796	479,93	-0,2034				
13	33	9	7	2005	233,34	31767	529,45	-0,2080				
21	29	10	7	2005	233,33	33683	561,38	-0,2086				
20	20	11	7	2005	233,33	35054	584,23	-0,2086				
20	38	12	7	2005	233,33	36512	608,53	-0,2086				
14	42	5	8	2005	233,33	70716	1178,60	-0,2086				

Quadro A2.114 Resultados do ensaio de evaporação do provete IMC 7.3T, após tratamento.

Figura A2.114 Ensaio de evaporação do provete IMC 7.3T, após tratamento.

PROVETE 8.1T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	11	17	6	2005	230,58	0	0,00	0,0000				
12	33	17	6	2005	230,52	22	0,37	-0,0039				
13	3	17	6	2005	230,45	52	0,87	-0,0084				
16	8	17	6	2005	230,26	237	3,95	-0,0207				
20	48	17	6	2005	230,02	517	8,62	-0,0362				
10	18	18	6	2005	229,23	1327	22,12	-0,0872				
22	33	18	6	2005	228,87	2062	34,37	-0,1104				
12	22	19	6	2005	228,69	2891	48,18	-0,1221				
22	8	19	6	2005	228,56	3477	57,95	-0,1305				
10	19	20	6	2005	228,45	4208	70,13	-0,1376				
2	2	21	6	2005	228,35	5151	85,85	-0,1440				
10	13	21	6	2005	228,28	5642	94,03	-0,1486				
20	31	21	6	2005	228,23	6260	104,33	-0,1518				
10	22	22	6	2005	228,14	7091	118,18	-0,1576				
22	10	22	6	2005	228,06	7799	129,98	-0,1628				
16	5	23	6	2005	227,96	8874	147,90	-0,1692				
19	36	24	6	2005	227,84	10525	175,42	-0,1770				
16	7	25	6	2005	227,76	11756	195,93	-0,1821				
20	4	26	6	2005	227,63	13433	223,88	-0,1905				
19	16	27	6	2005	227,56	14825	247,08	-0,1951				
20	58	28	6	2005	227,48	16367	272,78	-0,2002				
13	34	29	6	2005	227,40	17363	289,38	-0,2054				
21	2	30	6	2005	227,32	19251	320,85	-0,2106				
10	26	1	7	2005	227,31	20055	334,25	-0,2112				
12	18	2	7	2005	227,23	21607	360,12	-0,2164				
20	34	3	7	2005	227,16	23543	392,38	-0,2209				
12	5	4	7	2005	227,12	24474	407,90	-0,2235				
16	40	5	7	2005	227,09	26189	436,48	-0,2254				
20	57	6	7	2005	227,06	27886	464,77	-0,2273				
12	2	7	7	2005	227,06	28791	479,85	-0,2273				
13	35	9	7	2005	227,02	31764	529,40	-0,2299				
21	29	10	7	2005	227,00	33678	561,30	-0,2312				
20	21	11	7	2005	226,99	35050	584,17	-0,2319				
20	39	12	7	2005	226,99	36508	608,47	-0,2319				
14	43	5	8	2005	226,99	70712	1178,53	-0,2319				

Quadro A2.115 Resultados do ensaio de evaporação do provete IMC 8.1T, após tratamento.

Figura A2.115 Ensaio de evaporação do provete IMC 8.1T, após tratamento.

PROVETE 8.2T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	29	17	6	2005	231,93	0	0,00	0,0000				
12	42	17	6	2005	231,90	13	0,22	-0,0019				
13	9	17	6	2005	231,85	40	0,67	-0,0052				
16	12	17	6	2005	231,69	223	3,72	-0,0155				
20	51	17	6	2005	231,50	502	8,37	-0,0278				
10	19	18	6	2005	230,82	1310	21,83	-0,0717				
22	34	18	6	2005	230,55	2045	34,08	-0,0891				
12	23	19	6	2005	230,38	2874	47,90	-0,1001				
22	9	19	6	2005	230,28	3460	57,67	-0,1066				
10	22	20	6	2005	230,17	4193	69,88	-0,1137				
1	55	21	6	2005	230,05	5126	85,43	-0,1214				
10	17	21	6	2005	230,01	5628	93,80	-0,1240				
20	35	21	6	2005	229,95	6246	104,10	-0,1279				
10	26	22	6	2005	229,88	7077	117,95	-0,1324				
22	14	22	6	2005	229,82	7785	129,75	-0,1363				
16	14	23	6	2005	229,72	8865	147,75	-0,1427				
19	42	24	6	2005	229,63	10513	175,22	-0,1486				
16	14	25	6	2005	229,52	11745	195,75	-0,1557				
20	10	26	6	2005	229,42	13421	223,68	-0,1621				
19	19	27	6	2005	229,33	14810	246,83	-0,1679				
21	2	28	6	2005	229,26	16353	272,55	-0,1724				
13	36	29	6	2005	229,21	17347	289,12	-0,1757				
21	4	30	6	2005	229,11	19235	320,58	-0,1821				
10	28	1	7	2005	229,07	20039	333,98	-0,1847				
12	20	2	7	2005	229,02	21591	359,85	-0,1879				
20	36	3	7	2005	228,97	23527	392,12	-0,1912				
12	9	4	7	2005	228,91	24460	407,67	-0,1951				
16	45	5	7	2005	228,87	26176	436,27	-0,1976				
21	1	6	7	2005	228,81	27872	464,53	-0,2015				
12	8	7	7	2005	228,79	28779	479,65	-0,2028				
13	36	9	7	2005	228,72	31747	529,12	-0,2073				
21	34	10	7	2005	228,69	33665	561,08	-0,2093				
20	25	11	7	2005	228,68	35036	583,93	-0,2099				
20	58	12	7	2005	228,66	36509	608,48	-0,2112				
14	46	5	8	2005	228,66	70697	1178,28	-0,2112				

Quadro A2.116 Resultados do ensaio de evaporação do provete IMC 8.2T, após tratamento.

Figura A2.116 Ensaio de evaporação do provete IMC 8.2T, após tratamento.

PROVETE 8.3T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	12	17	6	2005	232,97	0	0,00	0,0000				
12	34	17	6	2005	232,91	22	0,37	-0,0039				
13	4	17	6	2005	232,87	52	0,87	-0,0065				
16	8	17	6	2005	232,71	236	3,93	-0,0168				
20	48	17	6	2005	232,53	516	8,60	-0,0284				
10	18	18	6	2005	231,83	1326	22,10	-0,0736				
22	33	18	6	2005	231,41	2061	34,35	-0,1008				
12	22	19	6	2005	231,18	2890	48,17	-0,1156				
22	8	19	6	2005	231,05	3476	57,93	-0,1240				
10	19	20	6	2005	230,93	4207	70,12	-0,1318				
2	3	21	6	2005	230,81	5151	85,85	-0,1395				
10	13	21	6	2005	230,77	5641	94,02	-0,1421				
20	31	21	6	2005	230,70	6259	104,32	-0,1466				
10	22	22	6	2005	230,60	7090	118,17	-0,1531				
22	11	22	6	2005	230,56	7799	129,98	-0,1557				
16	6	23	6	2005	230,45	8874	147,90	-0,1628				
19	37	24	6	2005	230,35	10525	175,42	-0,1692				
16	8	25	6	2005	230,29	11756	195,93	-0,1731				
20	4	26	6	2005	230,18	13432	223,87	-0,1802				
19	16	27	6	2005	230,14	14824	247,07	-0,1828				
20	58	28	6	2005	230,07	16366	272,77	-0,1873				
13	34	29	6	2005	230,03	17362	289,37	-0,1899				
21	2	30	6	2005	229,95	19250	320,83	-0,1951				
10	26	1	7	2005	229,93	20054	334,23	-0,1963				
12	18	2	7	2005	229,87	21606	360,10	-0,2002				
20	34	3	7	2005	229,81	23542	392,37	-0,2041				
12	5	4	7	2005	229,79	24473	407,88	-0,2054				
16	41	5	7	2005	229,75	26189	436,48	-0,2080				
20	57	6	7	2005	229,72	27885	464,75	-0,2099				
12	3	7	7	2005	229,70	28791	479,85	-0,2112				
13	35	9	7	2005	229,68	31763	529,38	-0,2125				
21	30	10	7	2005	229,65	33678	561,30	-0,2144				
20	21	11	7	2005	229,62	35049	584,15	-0,2164				
20	39	12	7	2005	229,62	36507	608,45	-0,2164				
14	43	5	8	2005	229,62	70711	1178,52	-0,2164				

Quadro A2.117 Resultados do ensaio de evaporação do provete IMC 8.3T, após tratamento.

Figura A2.117 Ensaio de evaporação do provete IMC 8.3T, após tratamento.

PROVETE 9.1T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	31	17	6	2005	234,16	0	0,00	0,0000				
12	42	17	6	2005	234,13	11	0,18	-0,0019				
13	10	17	6	2005	234,08	39	0,65	-0,0052				
16	12	17	6	2005	233,93	221	3,68	-0,0149				
20	51	17	6	2005	233,76	500	8,33	-0,0258				
10	19	18	6	2005	233,02	1308	21,80	-0,0736				
22	34	18	6	2005	232,70	2043	34,05	-0,0943				
12	23	19	6	2005	232,55	2872	47,87	-0,1040				
22	9	19	6	2005	232,42	3458	57,63	-0,1124				
10	22	20	6	2005	232,31	4191	69,85	-0,1195				
1	56	21	6	2005	232,22	5125	85,42	-0,1253				
10	17	21	6	2005	232,16	5626	93,77	-0,1292				
20	36	21	6	2005	232,10	6245	104,08	-0,1330				
10	27	22	6	2005	232,02	7076	117,93	-0,1382				
22	15	22	6	2005	231,92	7784	129,73	-0,1447				
16	14	23	6	2005	231,85	8863	147,72	-0,1492				
19	43	24	6	2005	231,72	10512	175,20	-0,1576				
16	14	25	6	2005	231,64	11743	195,72	-0,1628				
20	11	26	6	2005	231,54	13420	223,67	-0,1692				
19	20	27	6	2005	231,44	14809	246,82	-0,1757				
21	2	28	6	2005	231,35	16351	272,52	-0,1815				
13	36	29	6	2005	231,34	17345	289,08	-0,1821				
21	4	30	6	2005	231,23	19233	320,55	-0,1892				
10	28	1	7	2005	231,21	20037	333,95	-0,1905				
12	20	2	7	2005	231,14	21589	359,82	-0,1951				
20	36	3	7	2005	231,07	23525	392,08	-0,1996				
12	9	4	7	2005	231,01	24458	407,63	-0,2034				
16	45	5	7	2005	230,95	26174	436,23	-0,2073				
21	1	6	7	2005	230,90	27870	464,50	-0,2106				
12	8	7	7	2005	230,89	28777	479,62	-0,2112				
13	36	9	7	2005	230,81	31745	529,08	-0,2164				
21	34	10	7	2005	230,76	33663	561,05	-0,2196				
20	26	11	7	2005	230,73	35035	583,92	-0,2215				
20	59	12	7	2005	230,70	36508	608,47	-0,2235				
14	47	5	8	2005	230,70	70696	1178,27	-0,2235				

Quadro A2.118 Resultados do ensaio de evaporação do provete IMC 9.1T, após tratamento.

Figura A2.118 Ensaio de evaporação do provete IMC 9.1T, após tratamento.

	PROVETE 9.2T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S					
12	14	17	6	2005	232,61	0	0,00	0,0000					
12	34	17	6	2005	232,57	20	0,33	-0,0026					
13	5	17	6	2005	232,49	51	0,85	-0,0078					
16	8	17	6	2005	232,32	234	3,90	-0,0187					
20	48	17	6	2005	232,00	514	8,57	-0,0394					
10	18	18	6	2005	231,41	1324	22,07	-0,0775					
22	33	18	6	2005	230,98	2059	34,32	-0,1053					
12	22	19	6	2005	230,76	2888	48,13	-0,1195					
22	8	19	6	2005	230,64	3474	57,90	-0,1272					
10	19	20	6	2005	230,52	4205	70,08	-0,1350					
2	3	21	6	2005	230,41	5149	85,82	-0,1421					
10	14	21	6	2005	230,34	5640	94,00	-0,1466					
20	32	21	6	2005	230,30	6258	104,30	-0,1492					
10	23	22	6	2005	230,22	7089	118,15	-0,1544					
22	11	22	6	2005	230,13	7797	129,95	-0,1602					
16	6	23	6	2005	230,02	8872	147,87	-0,1673					
19	38	24	6	2005	229,95	10524	175,40	-0,1718					
16	9	25	6	2005	229,86	11755	195,92	-0,1776					
20	5	26	6	2005	229,76	13431	223,85	-0,1841					
19	16	27	6	2005	229,69	14822	247,03	-0,1886					
20	59	28	6	2005	229,62	16365	272,75	-0,1931					
13	34	29	6	2005	229,58	17360	289,33	-0,1957					
21	2	30	6	2005	229,50	19248	320,80	-0,2009					
10	26	1	7	2005	229,48	20052	334,20	-0,2022					
12	18	2	7	2005	229,42	21604	360,07	-0,2060					
20	34	3	7	2005	229,36	23540	392,33	-0,2099					
12	6	4	7	2005	229,34	24472	407,87	-0,2112					
16	41	5	7	2005	229,29	26187	436,45	-0,2144					
20	58	6	7	2005	229,27	27884	464,73	-0,2157					
12	3	7	7	2005	229,20	28789	479,82	-0,2202					
13	35	9	7	2005	229,20	31761	529,35	-0,2202					
21	30	10	7	2005	229,20	33676	561,27	-0,2202					
20	22	11	7	2005	229,20	35048	584,13	-0,2202					
20	40	12	7	2005	229,20	36506	608,43	-0,2202					
14	43	5	8	2005	229,20	70709	1178,48	-0,2202					

Quadro A2.119 Resultados do ensaio de evaporação do provete IMC 9.2T, após tratamento.

Figura A2.119 Ensaio de evaporação do provete IMC 9.2T, após tratamento.

PROVETE 9.3T												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	33	17	6	2005	232,93	0	0,00	0,0000				
12	43	17	6	2005	232,91	10	0,17	-0,0013				
13	10	17	6	2005	232,84	37	0,62	-0,0058				
16	12	17	6	2005	232,71	219	3,65	-0,0142				
20	51	17	6	2005	232,52	498	8,30	-0,0265				
10	19	18	6	2005	231,85	1306	21,77	-0,0698				
22	34	18	6	2005	231,55	2041	34,02	-0,0891				
12	23	19	6	2005	231,38	2870	47,83	-0,1001				
22	9	19	6	2005	231,29	3456	57,60	-0,1059				
10	22	20	6	2005	231,19	4189	69,82	-0,1124				
1	57	21	6	2005	231,08	5124	85,40	-0,1195				
10	18	21	6	2005	231,03	5625	93,75	-0,1227				
20	36	21	6	2005	230,98	6243	104,05	-0,1259				
10	27	22	6	2005	230,88	7074	117,90	-0,1324				
22	15	22	6	2005	230,84	7782	129,70	-0,1350				
16	14	23	6	2005	230,75	8861	147,68	-0,1408				
19	44	24	6	2005	230,64	10511	175,18	-0,1479				
16	15	25	6	2005	230,56	11742	195,70	-0,1531				
20	11	26	6	2005	230,48	13418	223,63	-0,1582				
19	20	27	6	2005	230,40	14807	246,78	-0,1634				
21	3	28	6	2005	230,31	16350	272,50	-0,1692				
13	36	29	6	2005	230,27	17343	289,05	-0,1718				
21	4	30	6	2005	230,20	19231	320,52	-0,1763				
10	28	1	7	2005	230,15	20035	333,92	-0,1796				
12	20	2	7	2005	230,11	21587	359,78	-0,1821				
20	36	3	7	2005	230,03	23523	392,05	-0,1873				
12	10	4	7	2005	229,98	24457	407,62	-0,1905				
16	46	5	7	2005	229,92	26173	436,22	-0,1944				
21	2	6	7	2005	229,86	27869	464,48	-0,1983				
12	9	7	7	2005	229,86	28776	479,60	-0,1983				
13	36	9	7	2005	229,82	31743	529,05	-0,2009				
21	35	10	7	2005	229,81	33662	561,03	-0,2015				
20	26	11	7	2005	229,80	35033	583,88	-0,2022				
20	59	12	7	2005	229,75	36506	608,43	-0,2054				
14	47	5	8	2005	229,71	70694	1178,23	-0,2080				

Quadro A2.120 Resultados do ensaio de evaporação do provete IMC 9.3T, após tratamento.

Figura A2.120 Ensaio de evaporação do provete IMC 9.3T, após tratamento.

	PROVE	те імс	1.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	13	8	11	2005	221,03	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	17	8	11	2005	221,33	0,20	4	0,2582	0,0194	0,2582	0,0194	0,20
12	8	8	11	2005	221,39	0,20	55	0,9574	0,0233	0,9574	0,0233	0,20
13	41	8	11	2005	221,42	0,20	148	1,5706	0,0252	1,5706	0,0252	0,20
18	41	8	11	2005	221,53	0,20	448	2,7325	0,0323	2,7325	0,0323	0,20
1	32	9	11	2005	221,58	0,20	859	3,7837	0,0355	3,7837	0,0355	0,20
9	35	9	11	2005	221,64	0,20	1342	4,7293	0,0394	4,7293	0,0394	0,20
19	58	9	11	2005	221,71	0,20	1965	5,7228	0,0439	5,7228	0,0439	0,20
10	24	10	11	2005	221,71	0,20	2831	6,8690	0,0439	6,8690	0,0433	0,20
20	15	10	11	2005	221,80	0,20	3422	7,5520	0,0497	7,5520	0,0497	0,20
10	43	11	11	2005	221,80	0,20	4290	8,4558	0,0497	8,4558	0,0497	0,20
19	41	11	11	2005	221,80	0,20	4828	8,9703	0,0497	8,9703	0,0497	0,20
10	53	12	11	2005	221,90	0,20	5740	9,7809	0,0562	9,7809	0,0562	0,20
18	15	13	11	2005	222,00	0,20	7622	11,2709	0,0626	11,2709	0,0626	0,20
21	32	14	11	2005	222,10	0,20	9259	12,4224	0,0691	12,4224	0,0691	0,20
12	53	15	11	2005	222,10	0,20	10180	13,0256	0,0691	13,0256	0,0691	0,20
11	26	16	11	2005	222,10	0,20	11533	13,8642	0,0691	13,8642	0,0691	0,20
13	16	17	11	2005	222,10	0,20	13083	14,7665	0,0691	14,7665	0,0691	0,20
14	53	18	11	2005	222,10	0,20	14620	15,6098	0,0691	15,6098	0,0691	0,20

Quadro A2.121 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,97 cm POROSIDADE LIVRE - 6,05%

Figura A2.121 Ensaio de absorção de água por capilaridade do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.

	PROVET	EIMC	1.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	22	8	11	2005	220,66	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	24	8	11	2005	220,92	0,20	2	0,1826	0,0168	0,1826	0,0168	0,20
12	11	8	11	2005	221,01	0,20	49	0,9037	0,0226	0,9037	0,0226	0,20
13	47	8	11	2005	221,04	0,20	145	1,5546	0,0245	1,5546	0,0245	0,20
18	45	8	11	2005	221,14	0,20	443	2,7172	0,0310	2,7172	0,0310	0,20
1	38	9	11	2005	221,19	0,20	856	3,7771	0,0342	3,7771	0,0342	0,20
9	40	9	11	2005	221,30	0,20	1338	4,7223	0,0413	4,7223	0,0413	0,20
20	6	9	11	2005	221,32	0,20	1964	5,7213	0,0426	5,7213	0,0426	0,20
10	28	10	11	2005	221,39	0,20	2826	6,8629	0,0471	6,8629	0,0471	0,20
20	18	10	11	2005	221,40	0,20	3416	7,5454	0,0478	7,5454	0,0478	0,20
10	46	11	11	2005	221,45	0,20	4284	8,4499	0,0510	8,4499	0,0510	0,20
19	44	11	11	2005	221,47	0,20	4822	8,9647	0,0523	8,9647	0,0523	0,20
10	55	12	11	2005	221,51	0,20	5733	9,7750	0,0549	9,7750	0,0549	0,20
18	17	13	11	2005	221,60	0,20	7615	11,2657	0,0607	11,2657	0,0607	0,20
21	35	14	11	2005	221,62	0,20	9253	12,4184	0,0620	12,4184	0,0620	0,20
12	56	15	11	2005	221,66	0,20	10174	13,0218	0,0646	13,0218	0,0646	0,20
11	29	16	11	2005	221,68	0,20	11527	13,8606	0,0659	13,8606	0,0659	0,20
13	19	17	11	2005	221,71	0,20	13077	14,7631	0,0678	14,7631	0,0678	0,20
14	57	18	11	2005	221,73	0,20	14615	15,6072	0,0691	15,6072	0,0691	0,20

Quadro A2.122 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 6,03 cm POROSIDADE LIVRE - 6,41%

Figura A2.122 Ensaio de absorção de água por capilaridade do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.

Quadro A2.123 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.3E, após tratamento e ensaio de envelhecimento. ALTURA MINUTOS HORA-1/2 PESO dW/S HORA-1/2 **PROVETE IMC 1.3E** dW/S ALTURA MINUTO DIA HORA MÊS ANO (g) (cm) 2005 218,20 0,20 0 0,0000 0,0000 0,0000 0,0000 0,20 11 22 8 11 11 25 8 11 2005 218,46 0,20 3 0,2236 0,0168 0,2236 0,0168 0,20 12 8 2005 218,54 0,20 49 0,9037 0,0220 0,9037 0,0220 0,20 11 11 48 8 146 1,5599 1,5599 13 11 2005 218,59 0,20 0,0252 0,0252 0,20 18 46 8 11 2005 218,68 0,20 444 2,7203 0,0310 2,7203 0,0310 0,20 1 39 9 11 2005 218,74 0,20 857 3,7793 0,0349 3,7793 0,0349 0,20 9 41 9 11 2005 218,82 0,20 1339 4,7241 0,0400 4,7241 0,0400 0,20 20 9 0,20 1964 0,0439 5,7213 0,0439 0,20 6 11 2005 218,88 5,7213 10 28 10 11 2005 218,96 0,20 2826 6,8629 0,0491 6,8629 0,0491 0,20 20 18 10 11 2005 218.97 0.20 3416 7.5454 0.0497 7.5454 0.0497 0.20 10 47 11 11 2005 219,04 4285 0,0543 8,4508 0,0543 0,20 8,4508 0,20 19 45 11 11 2005 219,04 0,20 4823 8,9657 0,0543 8,9657 0,0543 0,20 10 55 12 11 2005 219,10 0,20 5733 9,7750 0,0581 9,7750 0,0581 0,20 18 17 13 11 219,18 0,20 7615 11,2657 0,0633 11,2657 0,0633 0,20 2005 21 36 14 11 219,23 0,20 9254 12,4191 0,0665 12,4191 0,0665 0,20 2005 12 57 15 219,24 0,20 10175 0,0672 13,0224 0,0672 0,20 11 2005 13,0224 11 16 11 2005 219,27 0,20 11528 13,8612 0,0691 13,8612 0,0691 0,20 30 13 19 17 13077 11 2005 219,31 0,20 14,7631 0,0717 14,7631 0,0717 0,20 57 14 18 11 2005 219,34 0,20 14615 15,6072 0,0736 15,6072 0,0736 0,20

	PROVET	ге імс	1.4E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	14	8	11	2005	198,67	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	18	8	11	2005	198,70	0,20	4	0,2582	0,0019	0,2582	0,0019	0,20
12	8	8	11	2005	198,78	0,20	54	0,9487	0,0071	0,9487	0,0071	0,20
13	41	8	11	2005	198,88	0,20	147	1,5652	0,0136	1,5652	0,0136	0,20
18	42	8	11	2005	199,12	0,20	448	2,7325	0,0291	2,7325	0,0291	0,20
1	33	9	11	2005	199,25	0,20	859	3,7837	0,0375	3,7837	0,0375	0,20
9	36	9	11	2005	199,41	0,20	1342	4,7293	0,0478	4,7293	0,0478	0,20
20	0	9	11	2005	199,51	0,20	1966	5,7242	0,0543	5,7242	0,0543	0,20
10	25	10	11	2005	199,59	0,20	2831	6,8690	0,0594	6,8690	0,0594	0,20
20	15	10	11	2005	199,61	0,20	3421	7,5509	0,0607	7,5509	0,0607	0,20
10	44	11	11	2005	199,64	0,20	4290	8,4558	0,0626	8,4558	0,0626	0,20
19	41	11	11	2005	199,64	0,20	4827	8,9694	0,0626	8,9694	0,0626	0,20
10	53	12	11	2005	199,64	0,20	5739	9,7801	0,0626	9,7801	0,0626	0,20
18	15	13	11	2005	199,65	0,20	7621	11,2702	0,0633	11,2702	0,0633	0,20
21	33	14	11	2005	199,66	0,20	9259	12,4224	0,0639	12,4224	0,0639	0,20
12	54	15	11	2005	199,68	0,20	10180	13,0256	0,0652	13,0256	0,0652	0,20
11	27	16	11	2005	199,68	0,20	11533	13,8642	0,0652	13,8642	0,0652	0,20
13	16	17	11	2005	199,70	0,20	13082	14,7660	0,0665	14,7660	0,0665	0,20
14	54	18	11	2005	199,73	0,20	14620	15,6098	0,0685	15,6098	0,0685	0,20

Quadro A2.124 Resultados do ensaio de absorção de água por capilaridade do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,50 cm POROSIDADE LIVRE - 7,26%

Figura A2.124 Ensaio de absorção de água por capilaridade do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	2.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	15	8	11	2005	214,24	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	19	8	11	2005	214,69	0,20	4	0,2582	0,0291	0,2582	0,0291	0,20
12	8	8	11	2005	214,78	0,20	53	0,9399	0,0349	0,9399	0,0349	0,20
13	42	8	11	2005	214,85	0,20	147	1,5652	0,0394	1,5652	0,0394	0,20
18	42	8	11	2005	215,03	0,20	447	2,7295	0,0510	2,7295	0,0510	0,20
1	34	9	11	2005	215,16	0,20	859	3,7837	0,0594	3,7837	0,0594	0,20
9	37	9	11	2005	215,23	0,20	1342	4,7293	0,0639	4,7293	0,0639	0,20
20	3	9	11	2005	215,37	0,20	1968	5,7271	0,0730	5,7271	0,0730	0,20
10	26	10	11	2005	215,49	0,20	2831	6,8690	0,0807	6,8690	0,0807	0,20
20	15	10	11	2005	215,51	0,20	3420	7,5498	0,0820	7,5498	0,0820	0,20
10	44	11	11	2005	215,56	0,20	4289	8,4548	0,0853	8,4548	0,0853	0,20
19	42	11	11	2005	215,58	0,20	4827	8,9694	0,0865	8,9694	0,0865	0,20
10	53	12	11	2005	215,61	0,20	5738	9,7792	0,0885	9,7792	0,0885	0,20
18	15	13	11	2005	215,72	0,20	7620	11,2694	0,0956	11,2694	0,0956	0,20
21	33	14	11	2005	215,77	0,20	9258	12,4218	0,0988	12,4218	0,0988	0,20
12	54	15	11	2005	215,78	0,20	10179	13,0250	0,0995	13,0250	0,0995	0,20
11	27	16	11	2005	215,80	0,20	11532	13,8636	0,1008	13,8636	0,1008	0,20
13	17	17	11	2005	215,85	0,20	13082	14,7660	0,1040	14,7660	0,1040	0,20
14	55	18	11	2005	215,87	0,20	14620	15,6098	0,1053	15,6098	0,1053	0,20

Quadro A2.125 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,99 cm POROSIDADE LIVRE - 8,01%

Figura A2.125 Ensaio de absorção de água por capilaridade do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.

	PROVET	EIMC	2.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	23	8	11	2005	211,16	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	25	8	11	2005	211,48	0,20	2	0,1826	0,0207	0,1826	0,0207	0,20
12	12	8	11	2005	211,59	0,20	49	0,9037	0,0278	0,9037	0,0278	0,20
13	49	8	11	2005	211,63	0,20	146	1,5599	0,0304	1,5599	0,0304	0,20
18	46	8	11	2005	211,74	0,20	443	2,7172	0,0375	2,7172	0,0375	0,20
1	39	9	11	2005	211,80	0,20	856	3,7771	0,0413	3,7771	0,0413	0,20
9	41	9	11	2005	211,90	0,20	1338	4,7223	0,0478	4,7223	0,0478	0,20
20	7	9	11	2005	211,97	0,20	1964	5,7213	0,0523	5,7213	0,0523	0,20
10	29	10	11	2005	212,05	0,20	2826	6,8629	0,0575	6,8629	0,0575	0,20
20	19	10	11	2005	212,08	0,20	3416	7,5454	0,0594	7,5454	0,0594	0,20
10	47	11	11	2005	212,16	0,20	4284	8,4499	0,0646	8,4499	0,0646	0,20
19	45	11	11	2005	212,17	0,20	4822	8,9647	0,0652	8,9647	0,0652	0,20
10	55	12	11	2005	212,20	0,20	5732	9,7741	0,0672	9,7741	0,0672	0,20
18	18	13	11	2005	212,34	0,20	7615	11,2657	0,0762	11,2657	0,0762	0,20
21	36	14	11	2005	212,38	0,20	9253	12,4184	0,0788	12,4184	0,0788	0,20
12	57	15	11	2005	212,43	0,20	10174	13,0218	0,0820	13,0218	0,0820	0,20
11	30	16	11	2005	212,45	0,20	11527	13,8606	0,0833	13,8606	0,0833	0,20
13	20	17	11	2005	212,49	0,20	13077	14,7631	0,0859	14,7631	0,0859	0,20
14	58	18	11	2005	212,55	0,20	14615	15,6072	0,0898	15,6072	0,0898	0,20

Quadro A2.126 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 8,78%

Figura A2.126 Ensaio de absorção de água por capilaridade do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.

	PROVET	EIMC	2.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	34	8	11	2005	212,64	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	36	8	11	2005	214,52	1,40	2	0,1826	0,1214	0,1826	0,1214	1,40
11	43	8	11	2005	215,86	2,35	9	0,3873	0,2080	0,3873	0,2080	2,35
11	55	8	11	2005	217,31	4,15	21	0,5916	0,3016	0,5916	0,3016	4,15
12	1	8	11	2005	217,78	4,80	27	0,6708	0,3320	0,6708	0,3320	4,80
12	21	8	11	2005	219,02	5,65	47	0,8851	0,4121	0,8851	0,4121	5,65
12	35	8	11	2005	219,77	6,00	61	1,0083	0,4605	1,0083	0,4605	6,00
13	10	8	11	2005	220,35		96	1,2649	0,4980	1,2649	0,4980	
13	27	8	11	2005	220,35		113	1,3723	0,4980	1,3723	0,4980	
14	8	8	11	2005	220,40		154	1,6021	0,5012	1,6021	0,5012	
14	36	8	11	2005	220,41		182	1,7416	0,5018	1,7416	0,5018	
15	8	8	11	2005	220,42		214	1,8886	0,5025	1,8886	0,5025	
18	54	8	11	2005	220,50		440	2,7080	0,5077	2,7080	0,5077	
1	50	9	11	2005	220,54		856	3,7771	0,5102	3,7771	0,5102	
9	48	9	11	2005	220,66		1334	4,7152	0,5180	4,7152	0,5180	
20	14	9	11	2005	220,75		1960	5,7155	0,5238	5,7155	0,5238	
10	36	10	11	2005	221,01		2822	6,8581	0,5406	6,8581	0,5406	
20	25	10	11	2005	221,19		3411	7,5399	0,5522	7,5399	0,5522	
10	54	11	11	2005	221,32		4280	8,4459	0,5606	8,4459	0,5606	
19	51	11	11	2005	221,32		4817	8,9601	0,5606	8,9601	0,5606	
11	0	12	11	2005	221,40		5726	9,7690	0,5658	9,7690	0,5658	
18	22	13	11	2005	221,56		7608	11,2606	0,5761	11,2606	0,5761	
21	43	14	11	2005	221,63		9249	12,4157	0,5806	12,4157	0,5806	
13	4	15	11	2005	221,66		10170	13,0192	0,5826	13,0192	0,5826	
11	36	16	11	2005	221,71		11522	13,8576	0,5858	13,8576	0,5858	
13	26	17	11	2005	221,77		13072	14,7603	0,5897	14,7603	0,5897	
15	4	18	11	2005	221,81		14610	15,6045	0,5923	15,6045	0,5923	

Quadro A2.127 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.

Figura A2.127 Ensaio de absorção de água por capilaridade do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.

					PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	27	8	11	2005	210,19	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	29	8	11	2005	211,71	1,15	2	0,1826	0,0982	0,1826	0,0982	1,15
11	38	8	11	2005	213,33	2,45	11	0,4282	0,2028	0,4282	0,2028	2,45
11	47	8	11	2005	214,07	2,85	20	0,5774	0,2506	0,5774	0,2506	2,85
11	57	8	11	2005	214,62	3,50	30	0,7071	0,2861	0,7071	0,2861	3,50
12	14	8	11	2005	215,37	4,40	47	0,8851	0,3346	0,8851	0,3346	4,40
12	25	8	11	2005	215,77	4,80	58	0,9832	0,3604	0,9832	0,3604	4,80
12	43	8	11	2005	216,33	5,58	76	1,1255	0,3966	1,1255	0,3966	5,58
13	0	8	11	2005	216,79	5,58	93	1,2450	0,4263	1,2450	0,4263	5,58
13	21	8	11	2005	217,20	5,95	114	1,3784	0,4528	1,3784	0,4528	5,95
14	1	8	11	2005	217,66		154	1,6021	0,4825	1,6021	0,4825	
14	29	8	11	2005	217,79		182	1,7416	0,4909	1,7416	0,4909	
15	3	8	11	2005	217,84		216	1,8974	0,4941	1,8974	0,4941	
18	49	8	11	2005	217,97		442	2,7142	0,5025	2,7142	0,5025	
1	43	9	11	2005	218,08		856	3,7771	0,5096	3,7771	0,5096	
9	44	9	11	2005	218,15		1337	4,7205	0,5141	4,7205	0,5141	
20	10	9	11	2005	218,18		1963	5,7198	0,5160	5,7198	0,5160	
10	31	10	11	2005	218,31		2824	6,8605	0,5244	6,8605	0,5244	
20	21	10	11	2005	218,44		3414	7,5432	0,5328	7,5432	0,5328	
10	49	11	11	2005	218,56		4282	8,4479	0,5406	8,4479	0,5406	
19	47	11	11	2005	218,63		4820	8,9629	0,5451	8,9629	0,5451	
10	57	12	11	2005	218,74		5730	9,7724	0,5522	9,7724	0,5522	
18	19	13	11	2005	218,87		7612	11,2635	0,5606	11,2635	0,5606	
21	39	14	11	2005	218,93		9252	12,4177	0,5645	12,4177	0,5645	
12	59	15	11	2005	218,90		10172	13,0205	0,5626	13,0205	0,5626	
11	32	16	11	2005	219,00		11525	13,8594	0,5690	13,8594	0,5690	
13	22	17	11	2005	219,02		13075	14,7620	0,5703	14,7620	0,5703	
15	0	18	11	2005	219,05		14613	15,6061	0,5722	15,6061	0,5722	

Quadro A2.128 Resultados do ensaio de absorção de água por capilaridade do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.

Figura A2.128 Ensaio de absorção de água por capilaridade do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.

	PROVET	TE IMC	3.1E		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	34	8	11	2005	226,04	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	37	8	11	2005	227,08	1,00	3	0,2236	0,0672	0,2236	0,0672	1,00
11	44	8	11	2005	227,57	1,55	10	0,4082	0,0988	0,4082	0,0988	1,55
11	56	8	11	2005	228,11	2,50	22	0,6055	0,1337	0,6055	0,1337	2,50
12	2	8	11	2005	228,31	2,75	28	0,6831	0,1466	0,6831	0,1466	2,75
12	21	8	11	2005	229,03	3,85	47	0,8851	0,1931	0,8851	0,1931	3,85
12	36	8	11	2005	229,54	4,45	62	1,0165	0,2261	1,0165	0,2261	4,45
13	10	8	11	2005	230,65	5,97	96	1,2649	0,2977	1,2649	0,2977	5,97
13	27	8	11	2005	231,03		113	1,3723	0,3223	1,3723	0,3223	
14	9	8	11	2005	231,14		155	1,6073	0,3294	1,6073	0,3294	
14	36	8	11	2005	231,17		182	1,7416	0,3313	1,7416	0,3313	
15	9	8	11	2005	231,17		215	1,8930	0,3313	1,8930	0,3313	
18	54	8	11	2005	231,21		440	2,7080	0,3339	2,7080	0,3339	
1	51	9	11	2005	231,24		857	3,7793	0,3359	3,7793	0,3359	
9	49	9	11	2005	231,30		1335	4,7170	0,3397	4,7170	0,3397	
20	14	9	11	2005	231,34		1960	5,7155	0,3423	5,7155	0,3423	
10	36	10	11	2005	231,41		2822	6,8581	0,3468	6,8581	0,3468	
20	25	10	11	2005	231,48		3411	7,5399	0,3514	7,5399	0,3514	
10	54	11	11	2005	231,62		4280	8,4459	0,3604	8,4459	0,3604	
19	51	11	11	2005	231,67		4817	8,9601	0,3636	8,9601	0,3636	
11	1	12	11	2005	231,67		5727	9,7699	0,3636	9,7699	0,3636	
18	23	13	11	2005	231,82		7609	11,2613	0,3733	11,2613	0,3733	
21	43	14	11	2005	231,82		9249	12,4157	0,3733	12,4157	0,3733	
13	4	15	11	2005	231,82		10170	13,0192	0,3733	13,0192	0,3733	
11	36	16	11	2005	231,87		11522	13,8576	0,3765	13,8576	0,3765	
13	26	17	11	2005	231,89		13072	14,7603	0,3778	14,7603	0,3778	
15	4	18	11	2005	231,93		14610	15,6045	0,3804	15,6045	0,3804	

Quadro A2.129 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.

Figura A2.129 Ensaio de absorção de água por capilaridade do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.

	PROVET	TE IMC	3.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	27	8	11	2005	226,97	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	30	8	11	2005	228,02	1,15	3	0,2236	0,0678	0,2236	0,0678	1,15
11	39	8	11	2005	228,81	2,10	12	0,4472	0,1188	0,4472	0,1188	2,10
11	48	8	11	2005	229,32	2,80	21	0,5916	0,1518	0,5916	0,1518	2,80
11	58	8	11	2005	229,83	3,55	31	0,7188	0,1847	0,7188	0,1847	3,55
12	14	8	11	2005	230,64	4,65	47	0,8851	0,2370	0,8851	0,2370	4,65
12	26	8	11	2005	231,14	5,35	59	0,9916	0,2693	0,9916	0,2693	5,35
12	44	8	11	2005	231,87	6,03	77	1,1328	0,3165	1,1328	0,3165	6,03
13	1	8	11	2005	232,23		94	1,2517	0,3397	1,2517	0,3397	
13	21	8	11	2005	232,26		114	1,3784	0,3417	1,3784	0,3417	
14	2	8	11	2005	232,29		155	1,6073	0,3436	1,6073	0,3436	
14	30	8	11	2005	232,30		183	1,7464	0,3442	1,7464	0,3442	
15	4	8	11	2005	232,30		217	1,9018	0,3442	1,9018	0,3442	
18	49	8	11	2005	232,32		442	2,7142	0,3455	2,7142	0,3455	
1	44	9	11	2005	232,35		857	3,7793	0,3475	3,7793	0,3475	
9	44	9	11	2005	232,41		1337	4,7205	0,3514	4,7205	0,3514	
20	10	9	11	2005	232,46		1963	5,7198	0,3546	5,7198	0,3546	
10	32	10	11	2005	232,54		2825	6,8617	0,3597	6,8617	0,3597	
20	21	10	11	2005	232,57		3414	7,5432	0,3617	7,5432	0,3617	
10	50	11	11	2005	232,68		4283	8,4489	0,3688	8,4489	0,3688	
19	47	11	11	2005	232,70		4820	8,9629	0,3701	8,9629	0,3701	
10	57	12	11	2005	232,77		5730	9,7724	0,3746	9,7724	0,3746	
18	19	13	11	2005	232,84		7612	11,2635	0,3791	11,2635	0,3791	
21	39	14	11	2005	232,89		9252	12,4177	0,3824	12,4177	0,3824	
13	0	15	11	2005	232,91		10173	13,0211	0,3836	13,0211	0,3836	
11	32	16	11	2005	232,96		11525	13,8594	0,3869	13,8594	0,3869	
13	22	17	11	2005	232,98		13075	14,7620	0,3882	14,7620	0,3882	
15	0	18	11	2005	233,00		14613	15,6061	0,3895	15,6061	0,3895	

Quadro A2.130 Resultados do ensaio de absorção de água por capilaridade do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.

Figura A2.130 Ensaio de absorção de água por capilaridade do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.

	PROVE	ге імс	4.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	23	8	11	2005	226,90	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	25	8	11	2005	227,21	0,20	2	0,1826	0,0200	0,1826	0,0200	0,20
12	12	8	11	2005	227,25	0,20	49	0,9037	0,0226	0,9037	0,0226	0,20
13	49	8	11	2005	227,28	0,20	146	1,5599	0,0245	1,5599	0,0245	0,20
18	47	8	11	2005	227,39	0,20	444	2,7203	0,0316	2,7203	0,0316	0,20
1	40	9	11	2005	227,43	0,20	857	3,7793	0,0342	3,7793	0,0342	0,20
9	42	9	11	2005	227,51	0,20	1339	4,7241	0,0394	4,7241	0,0394	0,20
20	8	9	11	2005	227,59	0,20	1965	5,7228	0,0446	5,7228	0,0446	0,20
10	29	10	11	2005	227,64	0,20	2826	6,8629	0,0478	6,8629	0,0478	0,20
20	19	10	11	2005	227,68	0,20	3416	7,5454	0,0504	7,5454	0,0504	0,20
10	48	11	11	2005	227,72	0,20	4285	8,4508	0,0530	8,4508	0,0530	0,20
19	45	11	11	2005	227,72	0,20	4822	8,9647	0,0530	8,9647	0,0530	0,20
10	56	12	11	2005	227,79	0,20	5733	9,7750	0,0575	9,7750	0,0575	0,20
18	18	13	11	2005	227,80	0,20	7615	11,2657	0,0581	11,2657	0,0581	0,20
21	37	14	11	2005	227,89	0,20	9254	12,4191	0,0639	12,4191	0,0639	0,20
12	58	15	11	2005	227,91	0,20	10175	13,0224	0,0652	13,0224	0,0652	0,20
11	31	16	11	2005	227,93	0,20	11528	13,8612	0,0665	13,8612	0,0665	0,20
13	20	17	11	2005	227,96	0,20	13077	14,7631	0,0685	14,7631	0,0685	0,20
14	58	18	11	2005	227,99	0,20	14615	15,6072	0,0704	15,6072	0,0704	0,20

Quadro A2.131 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,97 cm POROSIDADE LIVRE - 4,68%

Figura A2.131 Ensaio de absorção de água por capilaridade do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.

	PROVE	ге імс	4.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	15	8	11	2005	226,36	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	19	8	11	2005	226,69	0,20	4	0,2582	0,0213	0,2582	0,0213	0,20
12	9	8	11	2005	226,76	0,20	54	0,9487	0,0258	0,9487	0,0258	0,20
13	42	8	11	2005	226,86	0,20	147	1,5652	0,0323	1,5652	0,0323	0,20
18	43	8	11	2005	226,91	0,20	448	2,7325	0,0355	2,7325	0,0355	0,20
1	35	9	11	2005	226,96	0,20	860	3,7859	0,0388	3,7859	0,0388	0,20
9	38	9	11	2005	227,05	0,20	1343	4,7311	0,0446	4,7311	0,0446	0,20
20	4	9	11	2005	227,12	0,20	1969	5,7286	0,0491	5,7286	0,0491	0,20
10	26	10	11	2005	227,17	0,20	2831	6,8690	0,0523	6,8690	0,0523	0,20
20	16	10	11	2005	227,20	0,20	3421	7,5509	0,0543	7,5509	0,0543	0,20
10	45	11	11	2005	227,23	0,20	4290	8,4558	0,0562	8,4558	0,0562	0,20
19	42	11	11	2005	227,25	0,20	4827	8,9694	0,0575	8,9694	0,0575	0,20
10	54	12	11	2005	227,29	0,20	5739	9,7801	0,0601	9,7801	0,0601	0,20
18	16	13	11	2005	227,37	0,20	7621	11,2702	0,0652	11,2702	0,0652	0,20
21	34	14	11	2005	227,39	0,20	9259	12,4224	0,0665	12,4224	0,0665	0,20
12	55	15	11	2005	227,44	0,20	10180	13,0256	0,0698	13,0256	0,0698	0,20
11	28	16	11	2005	227,43	0,20	11533	13,8642	0,0691	13,8642	0,0691	0,20
13	17	17	11	2005	227,46	0,20	13082	14,7660	0,0710	14,7660	0,0710	0,20
14	55	18	11	2005	227,49	0,20	14620	15,6098	0,0730	15,6098	0,0730	0,20

Quadro A2.132 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,97 cm POROSIDADE LIVRE - 4,67%

Figura A2.132 Ensaio de absorção de água por capilaridade do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	4.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO								
11	16	8	11	2005	228,94	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	19	8	11	2005	229,28	0,20	3	0,2236	0,0220	0,2236	0,0220	0,20
12	9	8	11	2005	229,33	0,20	53	0,9399	0,0252	0,9399	0,0252	0,20
13	42	8	11	2005	229,36	0,20	146	1,5599	0,0271	1,5599	0,0271	0,20
18	44	8	11	2005	229,44	0,20	448	2,7325	0,0323	2,7325	0,0323	0,20
1	36	9	11	2005	229,51	0,20	860	3,7859	0,0368	3,7859	0,0368	0,20
9	38	9	11	2005	229,61	0,20	1342	4,7293	0,0433	4,7293	0,0433	0,20
20	5	9	11	2005	229,67	0,20	1969	5,7286	0,0471	5,7286	0,0471	0,20
10	27	10	11	2005	229,75	0,20	2831	6,8690	0,0523	6,8690	0,0523	0,20
20	16	10	11	2005	229,78	0,20	3420	7,5498	0,0543	7,5498	0,0543	0,20
10	45	11	11	2005	229,82	0,20	4289	8,4548	0,0568	8,4548	0,0568	0,20
19	43	11	11	2005	229,85	0,20	4827	8,9694	0,0588	8,9694	0,0588	0,20
10	54	12	11	2005	229,89	0,20	5738	9,7792	0,0614	9,7792	0,0614	0,20
18	16	13	11	2005	229,97	0,20	7620	11,2694	0,0665	11,2694	0,0665	0,20
21	34	14	11	2005	230,01	0,20	9258	12,4218	0,0691	12,4218	0,0691	0,20
12	55	15	11	2005	230,04	0,20	10179	13,0250	0,0710	13,0250	0,0710	0,20
11	28	16	11	2005	230,05	0,20	11532	13,8636	0,0717	13,8636	0,0717	0,20
13	18	17	11	2005	230,07	0,20	13082	14,7660	0,0730	14,7660	0,0730	0,20
14	55	18	11	2005	230,11	0,20	14619	15,6093	0,0756	15,6093	0,0756	0,20

Quadro A2.133 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 6,01 cm POROSIDADE LIVRE - 4,59%

Figura A2.133 Ensaio de absorção de água por capilaridade do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.

	PROVE	ге імс	4.4E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO								
11	23	8	11	2005	229,55	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	26	8	11	2005	229,88	0,20	3	0,2236	0,0213	0,2236	0,0213	0,20
12	13	8	11	2005	229,92	0,20	50	0,9129	0,0239	0,9129	0,0239	0,20
13	50	8	11	2005	229,97	0,20	147	1,5652	0,0271	1,5652	0,0271	0,20
18	47	8	11	2005	230,04	0,20	444	2,7203	0,0316	2,7203	0,0316	0,20
1	41	9	11	2005	230,09	0,20	858	3,7815	0,0349	3,7815	0,0349	0,20
9	42	9	11	2005	230,16	0,20	1339	4,7241	0,0394	4,7241	0,0394	0,20
20	8	9	11	2005	230,22	0,20	1965	5,7228	0,0433	5,7228	0,0433	0,20
10	30	10	11	2005	230,31	0,20	2827	6,8642	0,0491	6,8642	0,0491	0,20
20	19	10	11	2005	230,31	0,20	3416	7,5454	0,0491	7,5454	0,0491	0,20
10	48	11	11	2005	230,38	0,20	4285	8,4508	0,0536	8,4508	0,0536	0,20
19	46	11	11	2005	230,40	0,20	4823	8,9657	0,0549	8,9657	0,0549	0,20
10	56	12	11	2005	230,46	0,20	5733	9,7750	0,0588	9,7750	0,0588	0,20
18	18	13	11	2005	230,54	0,20	7615	11,2657	0,0639	11,2657	0,0639	0,20
21	37	14	11	2005	230,58	0,20	9254	12,4191	0,0665	12,4191	0,0665	0,20
12	58	15	11	2005	230,62	0,20	10175	13,0224	0,0691	13,0224	0,0691	0,20
11	31	16	11	2005	230,63	0,20	11528	13,8612	0,0698	13,8612	0,0698	0,20
13	21	17	11	2005	230,67	0,20	13078	14,7637	0,0723	14,7637	0,0723	0,20
14	59	18	11	2005	230,71	0,20	14616	15,6077	0,0749	15,6077	0,0749	0,20

Quadro A2.134 Resultados do ensaio de absorção de água por capilaridade do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 6,02 cm POROSIDADE LIVRE - 4,43%

Figura A2.134 Ensaio de absorção de água por capilaridade do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.

	PROVE1	ге імс	5.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	24	8	11	2005	227,78	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	26	8	11	2005	228,14	0,20	2	0,1826	0,0233	0,1826	0,0233	0,20
12	13	8	11	2005	228,18	0,20	49	0,9037	0,0258	0,9037	0,0258	0,20
13	50	8	11	2005	228,24	0,20	146	1,5599	0,0297	1,5599	0,0297	0,20
18	48	8	11	2005	228,35	0,20	444	2,7203	0,0368	2,7203	0,0368	0,20
1	42	9	11	2005	228,41	0,20	858	3,7815	0,0407	3,7815	0,0407	0,20
9	43	9	11	2005	228,48	0,20	1339	4,7241	0,0452	4,7241	0,0452	0,20
20	9	9	11	2005	228,56	0,20	1965	5,7228	0,0504	5,7228	0,0504	0,20
10	31	10	11	2005	228,61	0,20	2827	6,8642	0,0536	6,8642	0,0536	0,20
20	20	10	11	2005	228,64	0,20	3416	7,5454	0,0555	7,5454	0,0555	0,20
10	49	11	11	2005	228,69	0,20	4285	8,4508	0,0588	8,4508	0,0588	0,20
19	46	11	11	2005	228,71	0,20	4822	8,9647	0,0601	8,9647	0,0601	0,20
10	56	12	11	2005	228,78	0,20	5732	9,7741	0,0646	9,7741	0,0646	0,20
18	19	13	11	2005	228,86	0,20	7615	11,2657	0,0698	11,2657	0,0698	0,20
21	38	14	11	2005	228,90	0,20	9254	12,4191	0,0723	12,4191	0,0723	0,20
12	59	15	11	2005	228,93	0,20	10175	13,0224	0,0743	13,0224	0,0743	0,20
11	31	16	11	2005	228,96	0,20	11527	13,8606	0,0762	13,8606	0,0762	0,20
13	21	17	11	2005	229,00	0,20	13077	14,7631	0,0788	14,7631	0,0788	0,20
14	59	18	11	2005	229,03	0,20	14615	15,6072	0,0807	15,6072	0,0807	0,20

Quadro A2.135 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 6,00 cm POROSIDADE LIVRE - 4,88%

Figura A2.135 Ensaio de absorção de água por capilaridade do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.

	PROVE1	Е ІМС	5.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	16	8	11	2005	226,09	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	20	8	11	2005	226,45	0,20	4	0,2582	0,0233	0,2582	0,0233	0,20
12	10	8	11	2005	226,52	0,20	54	0,9487	0,0278	0,9487	0,0278	0,20
13	43	8	11	2005	226,55	0,20	147	1,5652	0,0297	1,5652	0,0297	0,20
18	44	8	11	2005	226,66	0,20	448	2,7325	0,0368	2,7325	0,0368	0,20
1	37	9	11	2005	226,74	0,20	861	3,7881	0,0420	3,7881	0,0420	0,20
9	39	9	11	2005	226,80	0,20	1343	4,7311	0,0459	4,7311	0,0459	0,20
20	5	9	11	2005	226,94	0,20	1969	5,7286	0,0549	5,7286	0,0549	0,20
10	27	10	11	2005	227,00	0,20	2831	6,8690	0,0588	6,8690	0,0588	0,20
20	17	10	11	2005	227,01	0,20	3421	7,5509	0,0594	7,5509	0,0594	0,20
10	46	11	11	2005	227,10	0,20	4290	8,4558	0,0652	8,4558	0,0652	0,20
19	43	11	11	2005	227,11	0,20	4827	8,9694	0,0659	8,9694	0,0659	0,20
10	54	12	11	2005	227,18	0,20	5738	9,7792	0,0704	9,7792	0,0704	0,20
18	16	13	11	2005	227,26	0,20	7620	11,2694	0,0756	11,2694	0,0756	0,20
21	35	14	11	2005	227,33	0,20	9259	12,4224	0,0801	12,4224	0,0801	0,20
12	56	15	11	2005	227,33	0,20	10180	13,0256	0,0801	13,0256	0,0801	0,20
11	29	16	11	2005	227,38	0,20	11533	13,8642	0,0833	13,8642	0,0833	0,20
13	18	17	11	2005	227,38	0,20	13082	14,7660	0,0833	14,7660	0,0833	0,20
14	56	18	11	2005	227,46	0,20	14620	15,6098	0,0885	15,6098	0,0885	0,20

Quadro A2.136 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.

SECÇÃO - 15,4830 cm² ALTURA - 5,98 cm POROSIDADE LIVRE - 5,09%

Figura A2.136 Ensaio de absorção de água por capilaridade do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.

	PROVET	TE IMC	5.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	34	8	11	2005	226,26	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	38	8	11	2005	227,38	0,95	4	0,2582	0,0723	0,2582	0,0723	0,95
11	44	8	11	2005	228,03	1,95	10	0,4082	0,1143	0,4082	0,1143	1,95
11	56	8	11	2005	228,96	3,55	22	0,6055	0,1744	0,6055	0,1744	3,55
12	2	8	11	2005	229,40	4,25	28	0,6831	0,2028	0,6831	0,2028	4,25
12	22	8	11	2005	230,61	5,70	48	0,8944	0,2810	0,8944	0,2810	5,70
12	37	8	11	2005	231,27	6,01	63	1,0247	0,3236	1,0247	0,3236	6,01
13	10	8	11	2005	231,35		96	1,2649	0,3287	1,2649	0,3287	
13	27	8	11	2005	231,36		113	1,3723	0,3294	1,3723	0,3294	
14	10	8	11	2005	231,38		156	1,6125	0,3307	1,6125	0,3307	
14	37	8	11	2005	231,39		183	1,7464	0,3313	1,7464	0,3313	
15	9	8	11	2005	231,39		215	1,8930	0,3313	1,8930	0,3313	
18	55	8	11	2005	231,44		441	2,7111	0,3346	2,7111	0,3346	
1	52	9	11	2005	231,44		858	3,7815	0,3346	3,7815	0,3346	
9	49	9	11	2005	231,51		1335	4,7170	0,3391	4,7170	0,3391	
20	15	9	11	2005	231,56		1961	5,7169	0,3423	5,7169	0,3423	
10	37	10	11	2005	231,64		2823	6,8593	0,3475	6,8593	0,3475	
20	26	10	11	2005	231,66		3412	7,5410	0,3488	7,5410	0,3488	
10	55	11	11	2005	231,73		4281	8,4469	0,3533	8,4469	0,3533	
19	52	11	11	2005	231,76		4818	8,9610	0,3552	8,9610	0,3552	
11	1	12	11	2005	231,81		5727	9,7699	0,3585	9,7699	0,3585	
18	23	13	11	2005	231,92		7609	11,2613	0,3656	11,2613	0,3656	
21	44	14	11	2005	231,99		9250	12,4164	0,3701	12,4164	0,3701	
13	4	15	11	2005	232,00		10170	13,0192	0,3707	13,0192	0,3707	
11	37	16	11	2005	232,03		11523	13,8582	0,3727	13,8582	0,3727	
13	27	17	11	2005	232,07		13073	14,7609	0,3753	14,7609	0,3753	
15	5	18	11	2005	232,09		14611	15,6050	0,3765	15,6050	0,3765	

Quadro A2.137 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.

Figura A2.137 Ensaio de absorção de água por capilaridade do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.

	PROVET	LE IMC	5.4E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	8	11	2005	225,10	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	30	8	11	2005	226,23	1,15	2	0,1826	0,0730	0,1826	0,0730	1,15
11	40	8	11	2005	227,23	2,35	12	0,4472	0,1376	0,4472	0,1376	2,35
11	48	8	11	2005	227,97	2,90	20	0,5774	0,1854	0,5774	0,1854	2,90
11	58	8	11	2005	228,70	4,00	30	0,7071	0,2325	0,7071	0,2325	4,00
12	15	8	11	2005	229,81	5,98	47	0,8851	0,3042	0,8851	0,3042	5,98
12	27	8	11	2005	230,22		59	0,9916	0,3307	0,9916	0,3307	
12	45	8	11	2005	230,27		77	1,1328	0,3339	1,1328	0,3339	
13	2	8	11	2005	230,28		94	1,2517	0,3346	1,2517	0,3346	
13	21	8	11	2005	230,28		113	1,3723	0,3346	1,3723	0,3346	
14	2	8	11	2005	230,33		154	1,6021	0,3378	1,6021	0,3378	
14	30	8	11	2005	230,32		182	1,7416	0,3371	1,7416	0,3371	
15	4	8	11	2005	230,34		216	1,8974	0,3384	1,8974	0,3384	
18	50	8	11	2005	230,35		442	2,7142	0,3391	2,7142	0,3391	
1	45	9	11	2005	230,40		857	3,7793	0,3423	3,7793	0,3423	
9	45	9	11	2005	230,46		1337	4,7205	0,3462	4,7205	0,3462	
20	10	9	11	2005	230,53		1962	5,7184	0,3507	5,7184	0,3507	
10	32	10	11	2005	230,60		2824	6,8605	0,3552	6,8605	0,3552	
20	21	10	11	2005	230,62		3413	7,5421	0,3565	7,5421	0,3565	
10	50	11	11	2005	230,67		4282	8,4479	0,3597	8,4479	0,3597	
19	48	11	11	2005	230,68		4820	8,9629	0,3604	8,9629	0,3604	
10	58	12	11	2005	230,70		5730	9,7724	0,3617	9,7724	0,3617	
18	20	13	11	2005	230,79		7612	11,2635	0,3675	11,2635	0,3675	
21	39	14	11	2005	230,86		9251	12,4171	0,3720	12,4171	0,3720	
13	0	15	11	2005	230,89		10172	13,0205	0,3740	13,0205	0,3740	
11	33	16	11	2005	230,93		11525	13,8594	0,3765	13,8594	0,3765	
13	23	17	11	2005	230,93		13075	14,7620	0,3765	14,7620	0,3765	
15	1	18	11	2005	230.98		14613	15 6061	0.3798	15 6061	0.3798	

Quadro A2.138 Resultados do ensaio de absorção de água por capilaridade do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.

Figura A2.138 Ensaio de absorção de água por capilaridade do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	6.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	45	8	11	2005	231,72	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	50	8	11	2005	232,41	0,75	5	0,2887	0,0446	0,2887	0,0446	0,75
12	3	8	11	2005	232,77	1,50	18	0,5477	0,0678	0,5477	0,0678	1,50
12	38	8	11	2005	233,42	2,95	53	0,9399	0,1098	0,9399	0,1098	2,95
12	50	8	11	2005	233,61	3,20	65	1,0408	0,1221	1,0408	0,1221	3,20
13	15	8	11	2005	233,98	4,40	90	1,2247	0,1460	1,2247	0,1460	4,40
13	37	8	11	2005	234,31	5,25	112	1,3663	0,1673	1,3663	0,1673	5,25
13	57	8	11	2005	234,64	6,02	132	1,4832	0,1886	1,4832	0,1886	6,02
14	10	8	11	2005	234,82		145	1,5546	0,2002	1,5546	0,2002	
14	25	8	11	2005	235,00		160	1,6330	0,2118	1,6330	0,2118	
14	38	8	11	2005	235,13		173	1,6980	0,2202	1,6980	0,2202	
14	59	8	11	2005	235,25		194	1,7981	0,2280	1,7981	0,2280	
15	10	8	11	2005	235,27		205	1,8484	0,2293	1,8484	0,2293	
18	56	8	11	2005	235,35		431	2,6802	0,2345	2,6802	0,2345	
1	53	9	11	2005	235,36		848	3,7594	0,2351	3,7594	0,2351	
9	50	9	11	2005	235,41		1325	4,6993	0,2383	4,6993	0,2383	
20	15	9	11	2005	235,44		1950	5,7009	0,2403	5,7009	0,2403	
10	38	10	11	2005	235,45		2813	6,8471	0,2409	6,8471	0,2409	
20	27	10	11	2005	235,45		3402	7,5299	0,2409	7,5299	0,2409	
10	55	11	11	2005	235,52		4270	8,4360	0,2454	8,4360	0,2454	
19	52	11	11	2005	235,52		4807	8,9508	0,2454	8,9508	0,2454	
11	2	12	11	2005	235,59		5717	9,7613	0,2500	9,7613	0,2500	
18	24	13	11	2005	235,65		7599	11,2539	0,2538	11,2539	0,2538	
21	44	14	11	2005	235,70		9239	12,4090	0,2571	12,4090	0,2571	
13	5	15	11	2005	235,74		10160	13,0128	0,2596	13,0128	0,2596	
11	37	16	11	2005	235,74		11512	13,8516	0,2596	13,8516	0,2596	
13	27	17	11	2005	235,78		13062	14,7547	0,2622	14,7547	0,2622	
15	5	18	11	2005	235,80		14600	15,5991	0,2635	15,5991	0,2635	

Quadro A2.139 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.

Figura A2.139 Ensaio de absorção de água por capilaridade do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	6.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	8	11	2005	229,84	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	31	8	11	2005	230,49	1,10	3	0,2236	0,0420	0,2236	0,0420	1,10
11	40	8	11	2005	230,86	1,35	12	0,4472	0,0659	0,4472	0,0659	1,35
11	49	8	11	2005	231,15	1,80	21	0,5916	0,0846	0,5916	0,0846	1,80
11	59	8	11	2005	231,40	2,20	31	0,7188	0,1008	0,7188	0,1008	2,20
12	16	8	11	2005	231,83	3,00	48	0,8944	0,1285	0,8944	0,1285	3,00
12	28	8	11	2005	232,08	3,40	60	1,0000	0,1447	1,0000	0,1447	3,40
12	47	8	11	2005	232,49	4,60	79	1,1475	0,1712	1,1475	0,1712	4,60
13	21	8	11	2005	233,13	5,99	113	1,3723	0,2125	1,3723	0,2125	5,99
13	3	8	11	2005	232,82		95	1,2583	0,1925	1,2583	0,1925	
14	3	8	11	2005	233,35		155	1,6073	0,2267	1,6073	0,2267	
14	31	8	11	2005	233,35		183	1,7464	0,2267	1,7464	0,2267	
15	5	8	11	2005	233,36		217	1,9018	0,2273	1,9018	0,2273	
18	50	8	11	2005	233,41		442	2,7142	0,2306	2,7142	0,2306	
1	46	9	11	2005	233,42		858	3,7815	0,2312	3,7815	0,2312	
9	45	9	11	2005	233,47		1337	4,7205	0,2345	4,7205	0,2345	
20	11	9	11	2005	233,52		1963	5,7198	0,2377	5,7198	0,2377	
10	33	10	11	2005	233,57		2825	6,8617	0,2409	6,8617	0,2409	
20	22	10	11	2005	233,59		3414	7,5432	0,2422	7,5432	0,2422	
10	51	11	11	2005	233,60		4283	8,4489	0,2428	8,4489	0,2428	
19	48	11	11	2005	233,62		4820	8,9629	0,2441	8,9629	0,2441	
10	58	12	11	2005	233,63		5730	9,7724	0,2448	9,7724	0,2448	
18	20	13	11	2005	233,70		7612	11,2635	0,2493	11,2635	0,2493	
21	40	14	11	2005	233,75		9252	12,4177	0,2525	12,4177	0,2525	
13	1	15	11	2005	233,76		10173	13,0211	0,2532	13,0211	0,2532	
11	33	16	11	2005	233,77		11525	13,8594	0,2538	13,8594	0,2538	
13	23	17	11	2005	233,80		13075	14,7620	0,2558	14,7620	0,2558	
15	1	18	11	2005	233.82		14613	15,6061	0.2571	15.6061	0.2571	1

Quadro A2.140 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.

Figura A2.140 Ensaio de absorção de água por capilaridade do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.

	PROVET	ГЕ ІМС	6.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						L
11	45	8	11	2005	234,21	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	51	8	11	2005	234,82	0,80	6	0,3162	0,0394	0,3162	0,0394	0,80
12	4	8	11	2005	235,21	1,20	19	0,5627	0,0646	0,5627	0,0646	1,20
12	39	8	11	2005	235,88	2,50	54	0,9487	0,1079	0,9487	0,1079	2,50
12	51	8	11	2005	236,07	3,55	66	1,0488	0,1201	1,0488	0,1201	3,55
13	15	8	11	2005	236,41	5,20	90	1,2247	0,1421	1,2247	0,1421	5,20
13	37	8	11	2005	236,71	5,45	112	1,3663	0,1615	1,3663	0,1615	5,45
13	57	8	11	2005	237,02	5,80	132	1,4832	0,1815	1,4832	0,1815	5,80
14	11	8	11	2005	237,20	6,10	146	1,5599	0,1931	1,5599	0,1931	6,10
14	26	8	11	2005	237,36		161	1,6381	0,2034	1,6381	0,2034	
14	38	8	11	2005	237,48		173	1,6980	0,2112	1,6980	0,2112	1
15	0	8	11	2005	237,65		195	1,8028	0,2222	1,8028	0,2222	1
15	11	8	11	2005	237,68		206	1,8529	0,2241	1,8529	0,2241	1
18	56	8	11	2005	237,77		431	2,6802	0,2299	2,6802	0,2299	1
1	54	9	11	2005	237,83		849	3,7616	0,2338	3,7616	0,2338	L
9	50	9	11	2005	237,85		1325	4,6993	0,2351	4,6993	0,2351	L
20	16	9	11	2005	237,89		1951	5,7023	0,2377	5,7023	0,2377	1
10	38	10	11	2005	237,93		2813	6,8471	0,2403	6,8471	0,2403	1
20	28	10	11	2005	237,97		3403	7,5310	0,2428	7,5310	0,2428	1
10	56	11	11	2005	237,99		4271	8,4370	0,2441	8,4370	0,2441	1
19	53	11	11	2005	238,02		4808	8,9517	0,2461	8,9517	0,2461	1
11	2	12	11	2005	238,05		5717	9,7613	0,2480	9,7613	0,2480	1
18	24	13	11	2005	238,12		7599	11,2539	0,2525	11,2539	0,2525	1
21	45	14	11	2005	238,13		9240	12,4097	0,2532	12,4097	0,2532	1
13	6	15	11	2005	238,17		10161	13,0135	0,2558	13,0135	0,2558	L
11	38	16	11	2005	238,20		11513	13,8522	0,2577	13,8522	0,2577	L
13	28	17	11	2005	238,22		13063	14,7552	0,2590	14,7552	0,2590	L
15	6	18	11	2005	238 24		14601	15 5997	0 2603	15 5997	0.2603	

Quadro A2.141 Resultados do ensaio de absorção de água por capilaridade do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.

Figura A2.141 Ensaio de absorção de água por capilaridade do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	7.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	8	11	2005	230,85	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	31	8	11	2005	231,61	1,15	3	0,2236	0,0491	0,2236	0,0491	1,15
11	41	8	11	2005	232,21	2,10	13	0,4655	0,0878	0,4655	0,0878	2,10
11	49	8	11	2005	232,57	2,75	21	0,5916	0,1111	0,5916	0,1111	2,75
12	0	8	11	2005	232,92	3,30	32	0,7303	0,1337	0,7303	0,1337	3,30
12	16	8	11	2005	233,47	4,60	48	0,8944	0,1692	0,8944	0,1692	4,60
12	29	8	11	2005	233,81	5,45	61	1,0083	0,1912	1,0083	0,1912	5,45
12	48	8	11	2005	234,31	5,99	80	1,1547	0,2235	1,1547	0,2235	5,99
13	4	8	11	2005	234,49		96	1,2649	0,2351	1,2649	0,2351	
13	21	8	11	2005	234,55		113	1,3723	0,2390	1,3723	0,2390	
14	4	8	11	2005	234,57		156	1,6125	0,2403	1,6125	0,2403	
14	31	8	11	2005	234,59		183	1,7464	0,2416	1,7464	0,2416	
15	5	8	11	2005	234,59		217	1,9018	0,2416	1,9018	0,2416	
18	51	8	11	2005	234,61		443	2,7172	0,2428	2,7172	0,2428	
1	47	9	11	2005	234,62		859	3,7837	0,2435	3,7837	0,2435	
9	46	9	11	2005	234,65		1338	4,7223	0,2454	4,7223	0,2454	
20	11	9	11	2005	234,69		1963	5,7198	0,2480	5,7198	0,2480	
10	33	10	11	2005	234,71		2825	6,8617	0,2493	6,8617	0,2493	
20	22	10	11	2005	234,72		3414	7,5432	0,2500	7,5432	0,2500	
10	51	11	11	2005	234,72		4283	8,4489	0,2500	8,4489	0,2500	
19	49	11	11	2005	234,75		4821	8,9638	0,2519	8,9638	0,2519	
10	58	12	11	2005	234,79		5730	9,7724	0,2545	9,7724	0,2545	
18	20	13	11	2005	234,82		7612	11,2635	0,2564	11,2635	0,2564	
21	40	14	11	2005	234,90		9252	12,4177	0,2616	12,4177	0,2616	
13	1	15	11	2005	234,92		10173	13,0211	0,2629	13,0211	0,2629	
11	34	16	11	2005	234,94		11526	13,8600	0,2642	13,8600	0,2642	
13	23	17	11	2005	234,97		13075	14,7620	0,2661	14,7620	0,2661	
15	1	18	11	2005	235.00		14613	15.6061	0.2680	15,6061	0.2680	

Quadro A2.142 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.

Figura A2.142 Ensaio de absorção de água por capilaridade do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.

	PROVET	Е ІМС	7.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	45	8	11	2005	232,09	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	51	8	11	2005	232,81	0,95	6	0,3162	0,0465	0,3162	0,0465	0,95
12	4	8	11	2005	233,19	1,55	19	0,5627	0,0710	0,5627	0,0710	1,55
12	40	8	11	2005	234,03	3,10	55	0,9574	0,1253	0,9574	0,1253	3,10
12	52	8	11	2005	234,29	3,70	67	1,0567	0,1421	1,0567	0,1421	3,70
13	15	8	11	2005	234,74	5,30	90	1,2247	0,1712	1,2247	0,1712	5,30
13	37	8	11	2005	235,14	6,01	112	1,3663	0,1970	1,3663	0,1970	6,01
13	58	8	11	2005	235,45		133	1,4888	0,2170	1,4888	0,2170	
14	13	8	11	2005	235,53		148	1,5706	0,2222	1,5706	0,2222	
14	26	8	11	2005	235,53		161	1,6381	0,2222	1,6381	0,2222	
14	39	8	11	2005	235,57		174	1,7029	0,2248	1,7029	0,2248	
15	0	8	11	2005	235,57		195	1,8028	0,2248	1,8028	0,2248	
15	11	8	11	2005	235,57		206	1,8529	0,2248	1,8529	0,2248	
18	57	8	11	2005	235,59		432	2,6833	0,2261	2,6833	0,2261	
1	54	9	11	2005	235,60		849	3,7616	0,2267	3,7616	0,2267	
9	51	9	11	2005	235,68		1326	4,7011	0,2319	4,7011	0,2319	
20	16	9	11	2005	235,68		1951	5,7023	0,2319	5,7023	0,2319	
10	39	10	11	2005	235,69		2814	6,8484	0,2325	6,8484	0,2325	
20	28	10	11	2005	235,70		3403	7,5310	0,2332	7,5310	0,2332	
10	56	11	11	2005	235,71		4271	8,4370	0,2338	8,4370	0,2338	
19	53	11	11	2005	235,71		4808	8,9517	0,2338	8,9517	0,2338	
11	3	12	11	2005	235,76		5718	9,7622	0,2370	9,7622	0,2370	
18	24	13	11	2005	235,79		7599	11,2539	0,2390	11,2539	0,2390	
21	45	14	11	2005	235,82		9240	12,4097	0,2409	12,4097	0,2409	
13	6	15	11	2005	235,85		10161	13,0135	0,2428	13,0135	0,2428	
11	38	16	11	2005	235,88		11513	13,8522	0,2448	13,8522	0,2448	
13	28	17	11	2005	235,92		13063	14,7552	0,2474	14,7552	0,2474	
15	6	18	11	2005	235,96		14601	15,5997	0,2500	15,5997	0,2500	

Quadro A2.143 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.

Figura A2.143 Ensaio de absorção de água por capilaridade do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.

	PROVET	Е ІМС	7.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	28	8	11	2005	231,81	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	32	8	11	2005	232,51	1,15	4	0,2582	0,0452	0,2582	0,0452	1,15
11	41	8	11	2005	232,95	1,60	13	0,4655	0,0736	0,4655	0,0736	1,60
11	50	8	11	2005	233,21	2,50	22	0,6055	0,0904	0,6055	0,0904	2,50
12	0	8	11	2005	233,43	2,90	32	0,7303	0,1046	0,7303	0,1046	2,90
12	17	8	11	2005	233,84	3,30	49	0,9037	0,1311	0,9037	0,1311	3,30
12	30	8	11	2005	234,11	4,05	62	1,0165	0,1486	1,0165	0,1486	4,05
12	49	8	11	2005	234,42	5,15	81	1,1619	0,1686	1,1619	0,1686	5,15
13	4	8	11	2005	234,69	5,98	96	1,2649	0,1860	1,2649	0,1860	5,98
13	21	8	11	2005	234,92		113	1,3723	0,2009	1,3723	0,2009	
14	4	8	11	2005	235,14		156	1,6125	0,2151	1,6125	0,2151	
14	32	8	11	2005	235,19		184	1,7512	0,2183	1,7512	0,2183	
15	6	8	11	2005	235,20		218	1,9061	0,2189	1,9061	0,2189	
18	51	8	11	2005	235,23		443	2,7172	0,2209	2,7172	0,2209	
1	47	9	11	2005	235,24		859	3,7837	0,2215	3,7837	0,2215	
9	46	9	11	2005	235,28		1338	4,7223	0,2241	4,7223	0,2241	
20	12	9	11	2005	235,29		1964	5,7213	0,2248	5,7213	0,2248	
10	34	10	11	2005	235,32		2826	6,8629	0,2267	6,8629	0,2267	
20	23	10	11	2005	235,33		3415	7,5443	0,2273	7,5443	0,2273	
10	52	11	11	2005	235,36		4284	8,4499	0,2293	8,4499	0,2293	
19	49	11	11	2005	235,37		4821	8,9638	0,2299	8,9638	0,2299	
10	59	12	11	2005	235,39		5731	9,7733	0,2312	9,7733	0,2312	
18	21	13	11	2005	235,45		7613	11,2643	0,2351	11,2643	0,2351	
21	41	14	11	2005	235,47		9253	12,4184	0,2364	12,4184	0,2364	
13	2	15	11	2005	235,46		10174	13,0218	0,2357	13,0218	0,2357	
11	34	16	11	2005	235,53		11526	13,8600	0,2403	13,8600	0,2403	
13	24	17	11	2005	235,56		13076	14,7626	0,2422	14,7626	0,2422	
15	2	18	11	2005	235,60		14614	15,6066	0,2448	15,6066	0,2448	

Quadro A2.144 Resultados do ensaio de absorção de água por capilaridade do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.

Figura A2.144 Ensaio de absorção de água por capilaridade do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.

	PROVE	ге імс	8.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	33	8	11	2005	225,59	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	35	8	11	2005	226,03	0,95	2	0,1826	0,0289	0,1826	0,0289	0,95
11	42	8	11	2005	226,40	1,15	9	0,3873	0,0533	0,3873	0,0533	1,15
11	53	8	11	2005	226,80	1,40	20	0,5774	0,0796	0,5774	0,0796	1,40
12	19	8	11	2005	227,47	2,30	46	0,8756	0,1236	0,8756	0,1236	2,30
12	33	8	11	2005	227,79	2,45	60	1,0000	0,1447	1,0000	0,1447	2,45
13	10	8	11	2005	228,63		97	1,2715	0,1999	1,2715	0,1999	
13	27	8	11	2005	228,94	5,99	114	1,3784	0,2203	1,3784	0,2203	5,99
14	7	8	11	2005	229,32		154	1,6021	0,2453	1,6021	0,2453	
14	33	8	11	2005	229,34		180	1,7321	0,2466	1,7321	0,2466	
15	7	8	11	2005	229,34		214	1,8886	0,2466	1,8886	0,2466	
18	52	8	11	2005	229,38		439	2,7049	0,2493	2,7049	0,2493	
1	48	9	11	2005	229,40		855	3,7749	0,2506	3,7749	0,2506	
9	47	9	11	2005	229,44		1334	4,7152	0,2532	4,7152	0,2532	
20	12	9	11	2005	229,45		1959	5,7140	0,2539	5,7140	0,2539	
10	34	10	11	2005	229,49		2821	6,8569	0,2565	6,8569	0,2565	
20	23	10	11	2005	229,51		3410	7,5388	0,2578	7,5388	0,2578	
10	53	11	11	2005	229,56		4280	8,4459	0,2611	8,4459	0,2611	
19	50	11	11	2005	229,59		4817	8,9601	0,2631	8,9601	0,2631	
10	59	12	11	2005	229,63		5726	9,7690	0,2657	9,7690	0,2657	
18	21	13	11	2005	229,76		7608	11,2606	0,2742	11,2606	0,2742	
21	41	14	11	2005	229,76		9248	12,4150	0,2742	12,4150	0,2742	
13	2	15	11	2005	229,78		10169	13,0186	0,2756	13,0186	0,2756	
11	35	16	11	2005	229,80		11522	13,8576	0,2769	13,8576	0,2769	
13	25	17	11	2005	229,83		13072	14,7603	0,2789	14,7603	0,2789	
15	3	18	11	2005	229,84		14610	15,6045	0,2795	15,604487	0,2795	

Quadro A2.145 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.

Figura A2.145 Ensaio de absorção de água por capilaridade do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	8.2E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	46	8	11	2005	227,03	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	52	8	11	2005	227,72	0,95	6	0,3162	0,0454	0,3162	0,0454	0,95
12	5	8	11	2005	227,99	1,50	19	0,5627	0,0631	0,5627	0,0631	1,50
12	40	8	11	2005	228,54	2,20	54	0,9487	0,0993	0,9487	0,0993	2,20
12	53	8	11	2005	228,73	2,55	67	1,0567	0,1118	1,0567	0,1118	2,55
13	15	8	11	2005	229,05	3,95	89	1,2179	0,1328	1,2179	0,1328	3,95
13	37	8	11	2005	229,36	4,65	111	1,3601	0,1532	1,3601	0,1532	4,65
13	59	8	11	2005	229,68	5,50	133	1,4888	0,1743	1,4888	0,1743	5,50
14	13	8	11	2005	229,85	5,76	147	1,5652	0,1855	1,5652	0,1855	5,76
14	27	8	11	2005	230,02	6,02	161	1,6381	0,1966	1,6381	0,1966	6,02
14	39	8	11	2005	230,17		173	1,6980	0,2065	1,6980	0,2065	
15	1	8	11	2005	230,37		195	1,8028	0,2197	1,8028	0,2197	
15	12	8	11	2005	230,43		206	1,8529	0,2236	1,8529	0,2236	
18	57	8	11	2005	230,59		431	2,6802	0,2341	2,6802	0,2341	
1	55	9	11	2005	230,63		849	3,7616	0,2368	3,7616	0,2368	
9	51	9	11	2005	230,66		1325	4,6993	0,2387	4,6993	0,2387	
20	17	9	11	2005	230,69		1951	5,7023	0,2407	5,7023	0,2407	
10	39	10	11	2005	230,72		2813	6,8471	0,2427	6,8471	0,2427	
20	29	10	11	2005	230,74		3403	7,5310	0,2440	7,5310	0,2440	
10	57	11	11	2005	230,80		4271	8,4370	0,2479	8,4370	0,2479	
19	54	11	11	2005	230,81		4808	8,9517	0,2486	8,9517	0,2486	
11	3	12	11	2005	230,85		5717	9,7613	0,2512	9,7613	0,2512	
18	25	13	11	2005	230,87		7599	11,2539	0,2525	11,2539	0,2525	
21	45	14	11	2005	230,96		9239	12,4090	0,2585	12,4090	0,2585	
13	6	15	11	2005	230,98		10160	13,0128	0,2598	13,0128	0,2598	
11	39	16	11	2005	231,00		11513	13,8522	0,2611	13,8522	0,2611	
13	29	17	11	2005	231,01		13063	14,7552	0,2618	14,7552	0,2618	
15	7	18	11	2005	231,07		14601	15,5997	0,2657	15,5997	0,2657	

Quadro A2.146 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.

Figura A2.146 Ensaio de absorção de água por capilaridade do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.

	PROVET	E IMC	8.3E		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA-1/2	dW/S	ALTURA
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	33	8	11	2005	228,16	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	35	8	11	2005	228,74	1,00	2	0,1826	0,0381	0,1826	0,0381	1,00
11	42	8	11	2005	229,10	1,40	9	0,3873	0,0618	0,3873	0,0618	1,40
11	54	8	11	2005	229,50	2,00	21	0,5916	0,0881	0,5916	0,0881	2,00
12	20	8	11	2005	230,30	4,15	47	0,8851	0,1407	0,8851	0,1407	4,15
12	34	8	11	2005	230,69	5,00	61	1,0083	0,1664	1,0083	0,1664	5,00
13	10	8	11	2005	231,53	6,00	97	1,2715	0,2216	1,2715	0,2216	6,00
13	27	8	11	2005	231,63		114	1,3784	0,2282	1,3784	0,2282	
14	7	8	11	2005	231,69		154	1,6021	0,2322	1,6021	0,2322	
14	35	8	11	2005	231,70		182	1,7416	0,2328	1,7416	0,2328	
15	7	8	11	2005	231,70		214	1,8886	0,2328	1,8886	0,2328	
18	53	8	11	2005	231,71		440	2,7080	0,2335	2,7080	0,2335	
1	49	9	11	2005	231,74		856	3,7771	0,2354	3,7771	0,2354	
9	47	9	11	2005	231,78		1334	4,7152	0,2381	4,7152	0,2381	
20	13	9	11	2005	231,81		1960	5,7155	0,2400	5,7155	0,2400	
10	35	10	11	2005	231,83		2822	6,8581	0,2414	6,8581	0,2414	
20	24	10	11	2005	231,88		3411	7,5399	0,2447	7,5399	0,2447	
10	53	11	11	2005	231,93		4280	8,4459	0,2479	8,4459	0,2479	
19	50	11	11	2005	231,93		4817	8,9601	0,2479	8,9601	0,2479	
11	0	12	11	2005	231,96		5727	9,7699	0,2499	9,7699	0,2499	
18	22	13	11	2005	232,02		7609	11,2613	0,2539	11,2613	0,2539	
21	42	14	11	2005	232,04		9249	12,4157	0,2552	12,4157	0,2552	
13	3	15	11	2005	232,07		10170	13,0192	0,2571	13,0192	0,2571	
11	35	16	11	2005	232,10		11522	13,8576	0,2591	13,8576	0,2591	
13	25	17	11	2005	232,11		13072	14,7603	0,2598	14,7603	0,2598	
15	3	18	11	2005	232,15		14610	15,6045	0,2624	15,6045	0,2624	

Quadro A2.147 Resultados do ensaio de absorção de água por capilaridade do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.

Figura A2.147 Ensaio de absorção de água por capilaridade do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.

PROVETE IMC 9.1E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA			
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	46	8	11	2005	229,07	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	52	8	11	2005	229,67	0,90	6	0,3162	0,0395	0,3162	0,0395	0,90
12	5	8	11	2005	229,99	1,20	19	0,5627	0,0605	0,5627	0,0605	1,20
12	41	8	11	2005	230,58	2,25	55	0,9574	0,0993	0,9574	0,0993	2,25
12	53	8	11	2005	230,76	2,30	67	1,0567	0,1111	1,0567	0,1111	2,30
13	15	8	11	2005	231,09	3,55	89	1,2179	0,1328	1,2179	0,1328	3,55
13	37	8	11	2005	231,36	4,40	111	1,3601	0,1506	1,3601	0,1506	4,40
13	59	8	11	2005	231,72	5,40	133	1,4888	0,1743	1,4888	0,1743	5,40
14	14	8	11	2005	231,91	5,75	148	1,5706	0,1868	1,5706	0,1868	5,75
14	28	8	11	2005	232,09	6,00	162	1,6432	0,1986	1,6432	0,1986	6,00
14	41	8	11	2005	232,24		175	1,7078	0,2085	1,7078	0,2085	
15	1	8	11	2005	232,45		195	1,8028	0,2223	1,8028	0,2223	
15	12	8	11	2005	232,51		206	1,8529	0,2262	1,8529	0,2262	
18	58	8	11	2005	232,75		432	2,6833	0,2420	2,6833	0,2420	
1	56	9	11	2005	232,78		850	3,7639	0,2440	3,7639	0,2440	
9	52	9	11	2005	232,78		1326	4,7011	0,2440	4,7011	0,2440	
20	17	9	11	2005	232,84		1951	5,7023	0,2479	5,7023	0,2479	
10	40	10	11	2005	232,88		2814	6,8484	0,2506	6,8484	0,2506	
20	29	10	11	2005	232,91		3403	7,5310	0,2525	7,5310	0,2525	
10	57	11	11	2005	232,93		4271	8,4370	0,2539	8,4370	0,2539	
19	54	11	11	2005	232,95		4808	8,9517	0,2552	8,9517	0,2552	
11	4	12	11	2005	233,02		5718	9,7622	0,2598	9,7622	0,2598	
18	25	13	11	2005	233,06		7599	11,2539	0,2624	11,2539	0,2624	
21	46	14	11	2005	233,10		9240	12,4097	0,2650	12,4097	0,2650	
13	7	15	11	2005	233,14		10161	13,0135	0,2677	13,0135	0,2677	
11	39	16	11	2005	233,17		11513	13,8522	0,2696	13,8522	0,2696	
13	29	17	11	2005	233,19		13063	14,7552	0,2710	14,7552	0,2710	
15	7	18	11	2005	233,21		14601	15,5997	0,2723	15,5997	0,2723	

Quadro A2.148 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.

Figura A2.148 Ensaio de absorção de água por capilaridade do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.

PROVETE IMC 9.2E		PESO	ALTURA	MINUTOS	HORA-1/2	dW/S	HORA ^{-1/2}	dW/S	ALTURA			
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	33	8	11	2005	227,65	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	36	8	11	2005	228,28	1,00	3	0,2236	0,0414	0,2236	0,0414	1,00
11	43	8	11	2005	228,68	1,50	10	0,4082	0,0677	0,4082	0,0677	1,50
11	54	8	11	2005	229,11	2,20	21	0,5916	0,0960	0,5916	0,0960	2,20
12	20	8	11	2005	229,97	4,25	47	0,8851	0,1526	0,8851	0,1526	4,25
12	35	8	11	2005	230,37	5,00	62	1,0165	0,1789	1,0165	0,1789	5,00
13	10	8	11	2005	231,17	5,98	97	1,2715	0,2315	1,2715	0,2315	5,98
13	27	8	11	2005	231,23		114	1,3784	0,2354	1,3784	0,2354	
14	8	8	11	2005	231,26		155	1,6073	0,2374	1,6073	0,2374	
14	36	8	11	2005	231,26		183	1,7464	0,2374	1,7464	0,2374	
15	8	8	11	2005	231,28		215	1,8930	0,2387	1,8930	0,2387	
18	53	8	11	2005	231,29		440	2,7080	0,2394	2,7080	0,2394	
1	50	9	11	2005	231,30		857	3,7793	0,2400	3,7793	0,2400	
9	48	9	11	2005	231,34		1335	4,7170	0,2427	4,7170	0,2427	
20	13	9	11	2005	231,38		1960	5,7155	0,2453	5,7155	0,2453	
10	35	10	11	2005	231,40		2822	6,8581	0,2466	6,8581	0,2466	
20	24	10	11	2005	231,45		3411	7,5399	0,2499	7,5399	0,2499	
10	53	11	11	2005	231,50		4280	8,4459	0,2532	8,4459	0,2532	
19	51	11	11	2005	231,50		4818	8,9610	0,2532	8,9610	0,2532	
11	0	12	11	2005	231,56		5727	9,7699	0,2571	9,7699	0,2571	
18	22	13	11	2005	231,64		7609	11,2613	0,2624	11,2613	0,2624	
21	42	14	11	2005	231,66		9249	12,4157	0,2637	12,4157	0,2637	
13	3	15	11	2005	231,68		10170	13,0192	0,2650	13,0192	0,2650	
11	35	16	11	2005	231,71		11522	13,8576	0,2670	13,8576	0,2670	
13	26	17	11	2005	231,74		13073	14,7609	0,2690	14,7609	0,2690	
15	3	18	11	2005	231,75		14610	15,6045	0,2696	15,6045	0,2696	

Quadro A2.149 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.

0,25

0,25

0

15

SECÇÃO - 15,2053 cm² ALTURA - 5,98 cm POROSIDADE LIVRE - 4,11%

Figura A2.149 Ensaio de absorção de água por capilaridade do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.

PROVETE IMC 9.3E		PESO	ALTURA	MINUTOS	HORA ^{-1/2}	dW/S	HORA ^{-1/2}	dW/S	ALTURA			
HORA	MINUTO	DIA	MÊS	ANO	(g)	(cm)						
11	46	8	11	2005	228,13	0,20	0	0,0000	0,0000	0,0000	0,0000	0,20
11	53	8	11	2005	228,84	0,90	7	0,3416	0,0467	0,3416	0,0467	0,90
12	6	8	11	2005	229,19	1,40	20	0,5774	0,0697	0,5774	0,0697	1,40
12	42	8	11	2005	229,85	2,00	56	0,9661	0,1131	0,9661	0,1131	2,00
12	54	8	11	2005	230,03	2,30	68	1,0646	0,1250	1,0646	0,1250	2,30
13	15	8	11	2005	230,42	3,55	89	1,2179	0,1506	1,2179	0,1506	3,55
13	37	8	11	2005	230,75	5,20	111	1,3601	0,1723	1,3601	0,1723	5,20
14	0	8	11	2005	231,03	6,05	134	1,4944	0,1907	1,4944	0,1907	6,05
14	15	8	11	2005	231,21		149	1,5759	0,2026	1,5759	0,2026	
14	28	8	11	2005	231,33		162	1,6432	0,2105	1,6432	0,2105	
14	41	8	11	2005	231,41		175	1,7078	0,2157	1,7078	0,2157	
15	2	8	11	2005	231,50		196	1,8074	0,2216	1,8074	0,2216	
15	13	8	11	2005	231,50		207	1,8574	0,2216	1,8574	0,2216	
18	59	8	11	2005	231,57		433	2,6864	0,2262	2,6864	0,2262	
1	57	9	11	2005	231,60		851	3,7661	0,2282	3,7661	0,2282	
9	52	9	11	2005	231,63		1326	4,7011	0,2302	4,7011	0,2302	
20	18	9	11	2005	231,64		1952	5,7038	0,2308	5,7038	0,2308	
10	40	10	11	2005	231,71		2814	6,8484	0,2354	6,8484	0,2354	
20	30	10	11	2005	231,73		3404	7,5322	0,2368	7,5322	0,2368	
10	58	11	11	2005	231,79		4272	8,4380	0,2407	8,4380	0,2407	
19	55	11	11	2005	231,80		4809	8,9527	0,2414	8,9527	0,2414	
11	4	12	11	2005	231,84		5718	9,7622	0,2440	9,7622	0,2440	
18	25	13	11	2005	231,90		7599	11,2539	0,2479	11,2539	0,2479	
21	46	14	11	2005	231,90		9240	12,4097	0,2479	12,4097	0,2479	
13	7	15	11	2005	231,96		10161	13,0135	0,2519	13,0135	0,2519	
11	40	16	11	2005	231,97		11514	13,8528	0,2525	13,8528	0,2525	
13	30	17	11	2005	232,02		13064	14,7558	0,2558	14,7558	0,2558	
15	8	18	11	2005	232,02		14602	15,6002	0,2558	15,6002	0,2558	

Quadro A2.150 Resultados do ensaio de absorção de água por capilaridade do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.

PROVETE 1.1E										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
12	3	24	11	2005	227,82	0	0,00	0,0000		
12	43	24	11	2005	227,79	40	0,67	-0,0019		
13	47	24	11	2005	227,73	104	1,73	-0,0058		
17	44	24	11	2005	227,70	341	5,68	-0,0078		
2	11	25	11	2005	227,66	848	14,13	-0,0103		
8	19	25	11	2005	227,65	1216	20,27	-0,0110		
21	44	25	11	2005	227,60	2021	33,68	-0,0142		
12	0	26	11	2005	227,57	2877	47,95	-0,0161		
13	21	27	11	2005	227,49	4398	73,30	-0,0213		
19	57	28	11	2005	227,45	6234	103,90	-0,0239		
11	39	29	11	2005	227,41	7176	119,60	-0,0265		
10	22	30	11	2005	227,37	8539	142,32	-0,0291		
11	7	1	12	2005	227,29	10024	167,07	-0,0342		
13	50	2	12	2005	227,25	11627	193,78	-0,0368		
14	36	3	12	2005	227,16	13113	218,55	-0,0426		
13	18	4	12	2005	227,09	14475	241,25	-0,0471		
10	26	5	12	2005	227,06	15743	262,38	-0,0491		
10	35	6	12	2005	227,00	17192	286,53	-0,0530		
11	26	8	12	2005	226,86	20123	335,38	-0,0620		
12	23	9	12	2005	226,79	21620	360,33	-0,0665		
13	7	11	12	2005	226,65	24544	409,07	-0,0756		
10	42	13	12	2005	226,54	27279	454,65	-0,0827		
16	27	14	12	2005	226,45	29064	484,40	-0,0885		
11	40	15	12	2005	226,40	30217	503,62	-0,0917		
14	24	16	12	2005	226,32	31821	530,35	-0,0969		
9	58	19	12	2005	226,12	35875	597,92	-0,1098		
9	50	21	12	2005	225,97	38747	645,78	-0,1195		
13	12	22	12	2005	225,90	40389	673,15	-0,1240		
14	38	23	12	2005	225,82	41915	698,58	-0,1292		
14	31	24	12	2005	225,74	43348	722,47	-0,1343		
11	42	26	12	2005	225,60	46059	767,65	-0,1434		
10	44	27	12	2005	225,52	4/441	/90,68	-0,1486		
14	10	28	12	2005	225,42	49078	817,97	-0,1550		
14	12	29	12	2005	225,32	50529	842,15	-0,1015		
10	30	30	12	2005	225,24	51813	803,55	-0,1000		
10	24	4	1	2006	224,77	2094 I 40721	902,30	-0,1970		
10	4	5	1	2006	224,00	61002	1012,02	-0,2047		
13	0 51	0	1	2000	224,30	64040	1033,03	-0,2100		
12	36	10	1	2000	224,33	67833	1130 55	-0,2241		
17	30	10	1	2000	224,12	70596	1176 60	-0,2570		
12	37	12	1	2000	223,73	70370	1203.00	-0,2500		
10	14	16	1	2000	223,00	76451	1274 18	-0 2745		
13	43	18	1	2006	223.38	79300	1321.67	-0 2868		
10	16	20	1	2006	223 18	82213	1370 22	-0 2997		
14	32	21	1	2006	223 11	83669	1394 48	-0.3042		
11	32	23	1	2006	223.00	86369	1439 48	-0.3113		
10	17	26	1	2006	222.85	90614	1510.23	-0.3210		
11	26	27	1	2006	222.78	92123	1535.38	-0.3255		
9	51	30	1	2006	222,73	96348	1605,80	-0,3287		
10	58	31	1	2006	222,71	97855	1630,92	-0,3300		
14	16	2	2	2006	222,70	100933	1682,22	-0,3307		
9	51	3	2	2006	222,70	102108	1701,80	-0,3307		
10	5	7	2	2006	222,70	107882	1798,03	-0,3307		
14	3	8	2	2006	222,70	109560	1826,00	-0,3307		
12	7	10	2	2006	222,68	112324	1872,07	-0,3320		
14	16	13	2	2006	222,67	116773	1946,22	-0,3326		

Quadro A2.151 Resultados do ensaio de evaporação do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.

Figura A2.151 Ensaio de evaporação do provete IMC 1.1E, após tratamento e ensaio de envelhecimento.

PROVETE 1.2E												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
11	43	24	11	2005	227,82	0	0,00	0,0000				
11	56	24	11	2005	227,81	13	0,22	-0,0006				
14	12	24	11	2005	227,79	149	2,48	-0,0019				
17	46	24	11	2005	227,77	363	6,05	-0,0032				
2	16	25	11	2005	227,77	873	14,55	-0,0032				
8	22	25	11	2005	227,69	1239	20,65	-0,0084				
21	46	25	11	2005	227,69	2043	34,05	-0,0084				
12	3	26	11	2005	227.67	2900	48.33	-0.0097				
13	32	27	11	2005	227.60	4429	73.82	-0.0142				
19	59	28	11	2005	227,49	6256	104.27	-0.0213				
11	42	29	11	2005	227.46	7199	119.98	-0.0233				
10	24	30	11	2005	227.40	8561	142.68	-0.0271				
11	9	1	12	2005	227.32	10046	167.43	-0.0323				
13	53	2	12	2005	227 25	11650	194 17	-0.0368				
14	38	3	12	2005	227 17	13135	218.92	-0.0420				
13	20	4	12	2005	227.09	14497	241 62	-0.0471				
10	28	5	12	2000	227,03	15765	262 75	-0.0510				
10	20	6	12	2005	226,05	17215	286.92	-0,0510				
10	20	8	12	2005	226,50	20146	335.77	-0,0000				
11	23	0	12	2005	220,02	20140	360.72	-0,0040				
12	20	9	12	2005	220,73	21043	400,72	-0,0704				
13	0	11	12	2005	220,39	24303	409,42	-0,0794				
10	40	10	12	2005	220,40	27302	400,00	-0,0062				
10	29	14	12	2005	220,33	29000	404,77 502.09	-0,0902				
11	42	10	12	2005	220,29	30239	503,90	-0,0900				
14	21	10	12	2005	220,17	31844	500,73	-0,1000				
10	50	19	12	2005	220,97	30097	090,20 €4€ 47	-0,1195				
9	53	21	12	2005	220,00	30//0	670.55	-0,1200				
13	16	22	12	2005	225,73	40413	673,55	-0,1350				
14	40	23	12	2005	225,63	41937	598,95	-0,1414				
14	34	24	12	2005	225,57	43371	722,85	-0,1453				
10	40	20	12	2005	220,42	40062	700,03	-0,1550				
10	47	27	12	2005	225,34	47464	791,07	-0,1602				
14	3	20	12	2005	225,24	49100	010,33	-0,1000				
14	15	29	12	2005	225,16	50552	842,53	-0,1718				
11	38	30	12	2005	225,08	51835	863,92	-0,1770				
12	9	2	1	2006	224,84	50180	936,43	-0,1925				
10	27	4	1	2006	224,69	58964	982,73	-0,2022				
16	1	5	1	2006	224,62	60744	1012,40	-0,2067				
13	11	6	1	2006	224,52	62008	1033,47	-0,2131				
12	54	8	1	2006	224,35	64871	1081,18	-0,2241				
14	38	10	1	2006	224,18	67855	1130,92	-0,2351				
12	41	12	1	2006	224,04	70618	1176,97	-0,2441				
15	5	13	1	2006	223,92	72202	1203,37	-0,2519				
14	17	16	1	2006	223,71	76474	12/4,57	-0,2655				
13	44	18	1	2006	223,56	79321	1322,02	-0,2751				
14	19	20	1	2006	223,40	82236	1370,60	-0,2855				
14	34	21	1	2006	223,33	83691	1394,85	-0,2900				
11	35	23	1	2006	223,18	86392	1439,87	-0,2997				
10	20	26	1	2006	223,00	90637	1510,62	-0,3113				
11	29	27	1	2006	222,93	92146	1535,77	-0,3158				
9	54	30	1	2006	222,78	96371	1606,18	-0,3255				
11	1	31	1	2006	222,76	97878	1631,30	-0,3268				
14	19	2	2	2006	222,66	100956	1682,60	-0,3333				
9	54	3	2	2006	222,64	102131	1702,18	-0,3346				
12	16	4	2	2006	222,61	103713	1728,55	-0,3365				
10	7	7	2	2006	222,54	107904	1798,40	-0,3410				
14	6	8	2	2006	222,53	109583	1826,38	-0,3417				
12	10	10	2	2006	222,50	112347	1872,45	-0,3436				
14	19	13	2	2006	222,50	116796	1946,60	-0,3436				

Quadro A2.152 Resultados do ensaio de evaporação do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.

Figura A2.152 Ensaio de evaporação do provete IMC 1.2E, após tratamento e ensaio de envelhecimento.

PROVETE 1.3E												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
11	44	24	11	2005	225,60	0	0,00	0,0000				
11	57	24	11	2005	225,60	13	0,22	0,0000				
14	12	24	11	2005	225,58	148	2,47	-0,0013				
17	47	24	11	2005	225,56	363	6,05	-0,0026				
2	17	25	11	2005	225,55	873	14,55	-0,0032				
8	22	25	11	2005	225,50	1238	20,63	-0,0065				
21	46	25	11	2005	225,47	2042	34,03	-0,0084				
12	3	26	11	2005	225,40	2899	48,32	-0,0129				
13	32	27	11	2005	225,39	4428	73,80	-0,0136				
20	0	28	11	2005	225,29	6256	104,27	-0,0200				
11	42	29	11	2005	225,27	7198	119,97	-0,0213				
10	24	30	11	2005	225,21	8560	142,67	-0,0252				
11	10	1	12	2005	225,14	10046	167,43	-0,0297				
13	53	2	12	2005	225,08	11649	194,15	-0,0336				
14	38	3	12	2005	224,98	13134	218,90	-0,0400				
13	20	4	12	2005	224,95	14496	241,60	-0,0420				
10	29	5	12	2005	224,87	15765	262,75	-0,0471				
10	38	6	12	2005	224,81	17214	286,90	-0,0510				
11	29	8	12	2005	224,65	20145	335,75	-0,0614				
12	27	9	12	2005	224.60	21643	360.72	-0.0646				
13	9	11	12	2005	224,48	24565	409,42	-0.0723				
10	45	13	12	2005	224.36	27301	455.02	-0.0801				
16	29	14	12	2005	224.25	29085	484.75	-0.0872				
11	42	15	12	2005	224.20	30238	503.97	-0.0904				
14	28	16	12	2005	224.13	31844	530,73	-0.0949				
10	1	19	12	2005	223.94	35897	598,28	-0.1072				
9	53	21	12	2005	223.80	38769	646.15	-0.1163				
13	16	22	12	2005	223.72	40412	673.53	-0.1214				
10	41	23	12	2005	223 64	41937	698 95	-0 1266				
14	34	24	12	2005	223 57	43370	722 83	-0 1311				
11	45	26	12	2005	223,37	46081	768.02	-0 1402				
10	47	20	12	2005	223,13	47463	791.05	-0 1440				
10	3	28	12	2005	223,07	49099	818 32	-0 1505				
14	15	20	12	2005	223,27	50551	842 52	-0 1550				
11	30	30	12	2005	223,20	51835	863.92	-0 1602				
12	0	30 2	12	2005	223,12	56185	936.42	-0,1002				
12	27		1	2000	222,07	58963	982 72	-0,1730				
10	7	5	1	2006	222,77	60743	1012.38	-0,1820				
10	11	5	1	2000	222,71	62007	1012,30	0,1007				
13	55	8	1	2000	222,02	6/1871	1035,45	-0,1923				
12	30	10	1	2006	222,47	67855	1130.02	0,2022				
14	12	10	1	2000	222,31	70618	1176 07	0,2123				
12	42	12	1	2000	222,17	70010	1203 35	-0,2213				
13	10	13	1	2000	222,00	72201	1203,33	-0,2273				
14	10	10	1	2000	221,09	70474	1274,37	-0,2390				
13	44	10	1	2000	221,75	79320	1322,00	-0,2487				
14	19	20	1	2006	221,60	82235	1370,58	-0,2583				
14	25	21	1	2006	221,31	03090	1394,03	-0,2042				
10	30	23	1	2000	221,39	00427	1439,03	-0,2719				
10	21	26		2006	221,18	90037	1010,02	-0,2855				
11	30	27	1	2006	221,10	92146	1035,//	-0,2906				
9	55	30	1	2006	220,89	963/1	1006,18	-0,3042				
	1	31	1	2006	220,87	9/8//	1031,28	-0,3055				
9	55	3	2	2006	220,64	102131	1700.50	-0,3204				
12	- 16	4	2	2006	220,58	103/12	1/28,53	-0,3242				
10	8	7	2	2006	220,40	107904	1798,40	-0,3359				
14	6	8	2	2006	220,36	109582	1826,37	-0,3384				
12	10	10	2	2006	220,26	112346	1872,43	-0,3449				
14	20	13	2	2006	220.16	116796	1946.60	-0.3514				

Quadro A2.153 Resultados do ensaio de evaporação do provete IMC 1.3E, após tratamento e ensaio de envelhecimento.

Figura A2.153 Ensaio de evaporação do provete IMC 1.3E, após tratamento e ensaio de envelhecimento.

PROVETE 1.4E												
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	5	24	11	2005	205,39	0	0,00	0,0000				
12	44	24	11	2005	205,34	39	0,65	-0,0032				
13	47	24	11	2005	205,32	102	1,70	-0,0045				
17	44	24	11	2005	205,32	339	5,65	-0,0045				
2	12	25	11	2005	205.27	847	14.12	-0.0078				
8	20	25	11	2005	205,26	1215	20.25	-0.0084				
21	44	25	11	2005	205 20	2019	33 65	-0.0123				
12	1	26	11	2005	205,20	2876	47.93	-0 0149				
13	21	27	11	2005	205 11	4396	73 27	-0.0181				
19	57	28	11	2005	204 99	6232	103 87	-0.0258				
11	40	20	11	2005	204.98	7175	119 58	-0.0265				
10	23	30	11	2005	204 92	8538	142.30	-0.0304				
11	7	1	12	2005	204.83	10022	167.03	-0.0362				
13	, 51	2	12	2005	204,88	11626	193 77	-0.0394				
10	36	3	12	2005	201,70	13111	218 52	-0.0446				
13	18	3	12	2005	204,70	1//73	2/10,32	-0,0440				
10	26	5	12	2005	204,64	157/1	241,22	0.0510				
10	20	5	12	2005	204,00	17101	202,55	-0,0510				
10	30	0	12	2005	204,33	20122	200,32	-0,0555				
11	27	0	12	2005	204,39	20122	355,37	-0,0040				
12	23	9	12	2005	204,31	21010	400.02	-0,0098				
13	/	11	12	2005	204,10	24342	409,03	-0,0794				
10	43	13	12	2005	204,04	21210	404,03	-0,0672				
10	27	14	12	2005	203,93	29002	404,37 502 59	-0,0930				
11	40	10	12	2005	203,69	30213	530 33	-0,0909				
0	59	10	12	2005	203,00	31020	507.88	-0,1027				
9	51	21	12	2005	203,01	38746	645 77	-0,1150				
, 13	13	21	12	2005	203,43	40388	673 13	-0,1203				
13	38	22	12	2005	203,30	40300	698 55	-0,1270				
14	32	23	12	2005	203,21	43347	722 45	-0 1408				
11	42	26	12	2005	203.08	46057	767.62	-0.1492				
10	44	27	12	2005	203.04	47439	790.65	-0.1518				
14	1	28	12	2005	202.93	49076	817.93	-0,1589				
14	13	29	12	2005	202.86	50528	842.13	-0,1634				
11	36	30	12	2005	202,78	51811	863.52	-0,1686				
12	6	2	1	2006	202 56	56161	936.02	-0 1828				
10	24	4	1	2006	202.41	58939	982.32	-0,1925				
16	4	5	1	2006	202.36	60719	1011.98	-0.1957				
13	7	6	1	2006	202.26	61982	1033.03	-0.2022				
12	52	8	1	2006	202 12	64847	1080 78	-0 2112				
14	36	10	1	2006	201.88	67831	1130.52	-0.2267				
12	39	12	1	2006	201.73	70594	1176.57	-0.2364				
12	37	12	1	2000	201,75	72178	1202.97	-0 2416				
14	15	16	1	2006	201,30	76450	1274 17	-0 2571				
13	43	18	1	2006	201,71	79298	1321.63	-0 2687				
14		20	1	2000	201,23	82211	1370 18	-0 2790				
14	33	20	1	2006	201,07	83668	1394 47	-0 2848				
14	32	21	1	2000	200,70	86367	1439 45	-0 2952				
10	18	26	1	2006	200,52	90613	1510.22	-0 3107				
11	27	20	1	2000	200,30	92122	1535.37	-0.3184				
9	52	30	1	2006	200,10	96347	1605 78	-0 3313				
10	58	31	1	2006	200,16	97853	1630.88	-0.3378				
14	16	2	2	2006	200.06	100931	1682.18	-0,3442				
9	52	3	2	2006	200.02	102107	1701.78	-0,3468				
10	5	7	2	2006	199,89	107880	1798,00	-0,3552				
14	4	8	2	2006	199,86	109559	1825,98	-0,3572				
12	8	10	2	2006	199,86	112323	1872,05	-0,3572				
14	17	13	2	2006	199.86	116772	1946.20	-0,3572				

Quadro A2.154 Resultados do ensaio de evaporação do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.

Figura A2.154 Ensaio de evaporação do provete IMC 1.4E, após tratamento e ensaio de envelhecimento.
PROVETE 2.1E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	26	24	11	2005	222,76	0	0,00	0,0000	
12	44	24	11	2005	222,75	18	0,30	-0,0006	
13	48	24	11	2005	222.72	82	1.37	-0.0026	
17	45	24	11	2005	222.71	319	5.32	-0.0032	
2	13	25	11	2005	222.64	827	13 78	-0.0078	
8	20	25	11	2005	222,61	119/	19,70	-0.0078	
21	26	25	11	2005	222,04	1000	22.22	-0,0070	
21	40	20	11	2005	222,39	1999	33,32	-0,0110	
12	1	20	11	2005	222,33	2855	47,36	-0,0149	
13	30	27	11	2005	222,46	4384	73,07	-0,0194	
19	57	28	11	2005	222,36	6211	103,52	-0,0258	
11	40	29	11	2005	222,31	/154	119,23	-0,0291	
10	23	30	11	2005	222,18	8517	141,95	-0,0375	
11	7	1	12	2005	222,15	10001	166,68	-0,0394	
13	51	2	12	2005	222,06	11605	193,42	-0,0452	
14	36	3	12	2005	221,98	13090	218,17	-0,0504	
13	18	4	12	2005	221,87	14452	240,87	-0,0575	
10	27	5	12	2005	221,82	15721	262,02	-0,0607	
10	36	6	12	2005	221,74	17170	286,17	-0,0659	
11	27	8	12	2005	221,56	20101	335,02	-0,0775	
12	23	9	12	2005	221,47	21597	359,95	-0,0833	
13	7	11	12	2005	221,31	24521	408,68	-0,0937	
10	43	13	12	2005	221,15	27257	454,28	-0,1040	
16	27	14	12	2005	221,03	29041	484,02	-0,1117	
11	40	15	12	2005	220.97	30194	503.23	-0.1156	
14	26	16	12	2005	220.88	31800	530.00	-0.1214	
9	59	10	12	2005	220,60	35853	597 55	-0 1389	
,	51	21	12	2005	220,01	39725	645.42	0,1505	
, 12	12	21	12	2005	220,45	40267	673,72	0,1563	
13	20	22	12	2005	220,33	40307	609.20	-0,1537	
14	30	23	12	2005	220,23	41092	722.12	-0,1634	
14	33	24	12	2005	220,15	43327	722,12	-0,1686	
11	43	26	12	2005	219,98	46037	767,28	-0,1796	
10	45	27	12	2005	219,92	47419	/90,32	-0,1834	
14	1	28	12	2005	219,77	49055	817,58	-0,1931	
14	13	29	12	2005	219,69	50507	841,78	-0,1983	
11	37	30	12	2005	219,59	51791	863,18	-0,2047	
12	7	2	1	2006	219,33	56141	935,68	-0,2215	
10	25	4	1	2006	219,14	58919	981,98	-0,2338	
16	5	5	1	2006	219,07	60699	1011,65	-0,2383	
13	8	6	1	2006	218,95	61962	1032,70	-0,2461	
12	53	8	1	2006	218,77	64827	1080,45	-0,2577	
14	37	10	1	2006	218,55	67811	1130,18	-0,2719	
12	39	12	1	2006	218,38	70573	1176,22	-0,2829	
15	3	13	1	2006	218,28	72157	1202,62	-0,2893	
14	15	16	1	2006	218,02	76429	1273,82	-0,3061	
13	43	18	1	2006	217,85	79277	1321,28	-0,3171	
14	17	20	1	2006	217,65	82191	1369,85	-0,3300	
14	33	21	1	2006	217.53	83647	1394.12	-0.3378	
11	33	23	1	2006	217.39	86347	1439.12	-0.3468	
10	18	26	1	2006	217 10	90592	1509.87	-0.3656	
11	27	20	1	2000	217,10	92101	1525 02	-0 3720	
0	۲2 ۲	27	1	2000	217,00	06276	1605 /2	-U 3840	
10	52	21	1	2000	210,77	70320 07020	1620 55	0,3009	
10	17	31	1	2000	210,09	100011	1401 05	-0,3720	
14	17	2	2	2006	210,54	100911	1701 40	-0,4017	
9	52	3	- 2	2006	216,50	102086	1701,43	-0,4043	
10	5	7	2	2006	216,29	107859	1/97,65	-0,4179	
14	4	8	2	2006	216,25	109538	1825,63	-0,4205	
12	8	10	2	2006	216,24	112302	1871,70	-0,4211	
14	17	13	2	2006	216,24	116751	1945,85	-0,4211	

Quadro A2.155 Resultados do ensaio de evaporação do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.

Figura A2.155 Ensaio de evaporação do provete IMC 2.1E, após tratamento e ensaio de envelhecimento.

	PROVETE 2.2E								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	46	24	11	2005	220,21	0	0,00	0,0000	
11	57	24	11	2005	220,19	11	0,18	-0,0013	
14	12	24	11	2005	220,16	146	2,43	-0,0032	
17	47	24	11	2005	220,14	361	6,02	-0,0045	
2	17	25	11	2005	220,10	871	14,52	-0,0071	
8	23	25	11	2005	220,07	1237	20,62	-0,0090	
21	46	25	11	2005	220,04	2040	34,00	-0,0110	
12	4	26	11	2005	219,97	2898	48,30	-0,0155	
13	32	27	11	2005	219,88	4426	73,77	-0,0213	
20	0	28	11	2005	219.75	6254	104.23	-0.0297	
11	43	29	11	2005	219.73	7197	119,95	-0.0310	
10	25	30	11	2005	219.65	8559	142.65	-0.0362	
11	10	1	12	2005	219.55	10044	167.40	-0.0426	
13	54	2	12	2005	219 46	11648	194 13	-0.0484	
14	38	3	12	2005	219,35	13132	218.87	-0.0555	
13	20	4	12	2005	219.30	14494	241 57	-0.0588	
10	29	5	12	2005	219,24	15763	262 72	-0.0626	
10	38	6	12	2005	219,24	17212	286.87	-0.0678	
11	30	8	12	2005	219,10	20144	335 73	-0.0801	
12	27	0	12	2005	210,77	20144	360.68	-0,0001	
12	0	11	12	2005	210,07	21041	400.20	0,0055	
13	7	11	12	2005	210,71	24303	407,30	-0,0707	
10	40	13	12	2005	210,00	27300	455,00	-0,1000	
10	30	14	12	2005	210,40	29004	404,73 E02.0E	-0,1137	
14	43	10	12	2005	210,37	210/2	503,95	-0,1100	
14	20	10	12	2005	210,27	25004	530,70	-0,1203	
10	Z	19	12	2003	210,01	30890	596,27	-0,1421	
9	24	21	12	2005	217,80	38/08	640,13	-0,1524	
13	10	22	12	2005	217,72	40410	673,50	-0,1008	
14	41	23	12	2005	217,03	41935	598,92	-0,1000	
14	34	24	12	2005	217,55	43368	722,80	-0,1718	
10	40	20	12	2005	217,39	40080	708,00	-0,1821	
10	47	27	12	2005	217,29	4/461	/91,02	-0,1886	
14	4	28	12	2005	217,18	49098	818,30	-0,1957	
14	16	29	12	2005	217,08	50550	842,50	-0,2022	
11	39	30	12	2005	217,00	51833	863,88	-0,2073	
12	9	2	1	2006	210,72	50183	936,38	-0,2254	
10	21	4	1	2006	216,56	58961	982,68	-0,2357	
16	1	5	1	2006	216,47	60741	1012,35	-0,2416	
13	12	6	1	2006	216,40	62006	1033,43	-0,2461	
12	55	8	1	2006	216,17	64869	1081,15	-0,2609	
14	39	10	1	2006	215,97	6/853	1130,88	-0,2738	
12	42	12	1	2006	215,79	70616	11/6,93	-0,2855	
15	6	13	1	2006	215,69	72200	1203,33	-0,2919	
14	18	16	1	2006	215,42	76472	12/4,53	-0,3094	
13	44	18	1	2006	215,24	/9318	1321,97	-0,3210	
14	20	20	1	2006	215,03	82234	1370,57	-0,3346	
14	35	21	1	2006	214,94	83689	1394,82	-0,3404	
11	36	23	1	2006	214,77	86390	1439,83	-0,3514	
10	21	26	1	2006	214,50	90635	1510,58	-0,3688	
11	30	27	1	2006	214,33	92144	1535,73	-0,3798	
9	55	30	1	2006	214,11	96369	1606,15	-0,3940	
11	1	31	1	2006	214,01	97875	1631,25	-0,4004	
14	20	2	2	2006	213,82	100954	1682,57	-0,4127	
9	55	3	2	2006	213,75	102129	1702,15	-0,4172	
12	16	4	2	2006	213,65	103710	1728,50	-0,4237	
10	8	7	2	2006	213,44	107902	1798,37	-0,4373	
14	7	8	2	2006	213,34	109581	1826,35	-0,4437	
12	11	10	2	2006	213,29	112345	1872,42	-0,4469	
14	20	13	2	2006	213,06	116794	1946,57	-0,4618	

Quadro A2.156 Resultados do ensaio de evaporação do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.

Figura A2.156 Ensaio de evaporação do provete IMC 2.2E, após tratamento e ensaio de envelhecimento.

	PROVETE 2.3E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
12	52	24	11	2005	222,30	0	0,00	0,0000		
13	16	24	11	2005	222,26	24	0,40	-0,0026		
14	18	24	11	2005	222,20	86	1,43	-0,0065		
17	53	24	11	2005	222,09	301	5,02	-0,0136		
2	27	25	11	2005	221,84	815	13,58	-0,0297		
8	29	25	11	2005	221,67	1177	19,62	-0,0407		
13	37	25	11	2005	221,51	1485	24,75	-0,0510		
21	52	25	11	2005	221,19	1980	33,00	-0,0717		
12	10	26	11	2005	220,79	2838	47,30	-0,0975		
13	36	27	11	2005	220,02	4364	72,73	-0,1473		
20	5	28	11	2005	218,94	6193	103,22	-0,2170		
11	48	29	11	2005	218,35	7136	118,93	-0,2551		
10	28	30	11	2005	217,78	8496	141,60	-0,2919		
11	16	1	12	2005	217,48	9984	166,40	-0,3113		
13	59	2	12	2005	217,22	11587	193,12	-0,3281		
14	42	3	12	2005	216,98	13070	217,83	-0,3436		
13	24	4	12	2005	216,84	14432	240,53	-0,3526		
10	34	5	12	2005	216,73	15702	261,70	-0,3597		
10	43	6	12	2005	216,59	17151	285,85	-0,3688		
11	35	8	12	2005	216,30	20083	334,72	-0,3875		
12	32	9	12	2005	216,16	21580	359,67	-0,3966		
13	12	11	12	2005	215,94	24500	408,33	-0,4108		
10	51	13	12	2005	215,77	27239	453,98	-0,4218		
16	35	14	12	2005	215,62	29023	483,72	-0,4314		
11	48	15	12	2005	215,58	30176	502,93	-0,4340		
14	34	16	12	2005	215,49	31782	529,70	-0,4398		
10	8	19	12	2005	215,28	35836	597,27	-0,4534		
9	59	21	12	2005	215,15	38707	645,12	-0,4618		
13	22	22	12	2005	215,08	40350	672,50	-0,4663		
14	47	23	12	2005	215,02	41875	697,92	-0,4702		
14	38	24	12	2005	214,98	43306	721,77	-0,4728		
11	51	26	12	2005	214,91	46019	766,98	-0,4773		
10	53	27	12	2005	214,88	47401	790,02	-0,4792		
14	9	28	12	2005	214,86	49037	817,28	-0,4805		
11	45	30	12	2005	214,82	51773	862,88	-0,4831		
12	16	2	1	2006	214,80	56124	935,40	-0,4844		
13	19	6	1	2006	214,76	61947	1032,45	-0,4870		
12	48	12	1	2006	214,72	70556	1175,93	-0,4896		
14	24	16	1	2006	214,72	76412	1273,53	-0,4896		
14	27	13	2	2006	214,72	116735	1945,58	-0,4896		

Quadro A2.157 Resultados do ensaio de evaporação do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.

Figura A2.157 Ensaio de evaporação do provete IMC 2.3E, após tratamento e ensaio de envelhecimento.

	PROVETE 2.4E										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	34	24	11	2005	219,60	0	0,00	0,0000			
12	56	24	11	2005	219,57	22	0,37	-0,0019			
14	14	24	11	2005	219,53	100	1,67	-0,0045			
17	49	24	11	2005	219,44	315	5,25	-0,0103			
2	20	25	11	2005	219,23	826	13,77	-0,0239			
8	25	25	11	2005	219,04	1191	19,85	-0,0362			
13	33	25	11	2005	218,87	1499	24,98	-0,0471			
21	48	25	11	2005	218,57	1994	33,23	-0,0665			
12	6	26	11	2005	218,12	2852	47,53	-0,0956			
13	33	27	11	2005	217,38	4379	72,98	-0,1434			
20	2	28	11	2005	216,37	6208	103,47	-0,2086			
11	44	29	11	2005	215,81	7150	119,17	-0,2448			
10	26	30	11	2005	215,17	8512	141,87	-0,2861			
11	12	1	12	2005	214,78	9998	166,63	-0,3113			
13	56	2	12	2005	214,49	11602	193,37	-0,3300			
14	39	3	12	2005	214,26	13085	218,08	-0,3449			
13	21	4	12	2005	214,08	14447	240,78	-0,3565			
10	31	5	12	2005	213,96	15717	261,95	-0,3643			
10	40	6	12	2005	213,79	17166	286,10	-0,3753			
11	31	8	12	2005	213,56	20097	334,95	-0,3901			
12	29	9	12	2005	213,46	21595	359,92	-0,3966			
13	10	11	12	2005	213,25	24516	408,60	-0,4101			
10	48	13	12	2005	213,11	27254	454,23	-0,4192			
16	31	14	12	2005	212,99	29037	483,95	-0,4269			
11	44	15	12	2005	212,95	30190	503,17	-0,4295			
14	30	16	12	2005	212,86	31796	529,93	-0,4353			
10	4	19	12	2005	212,70	35850	597,50	-0,4457			
9	56	21	12	2005	212,60	38722	645,37	-0,4521			
13	18	22	12	2005	212,56	40364	672,73	-0,4547			
14	43	23	12	2005	212,51	41889	698,15	-0,4579			
14	35	24	12	2005	212,47	43321	722,02	-0,4605			
11	48	26	12	2005	212,43	46034	767,23	-0,4631			
10	49	27	12	2005	212,44	47415	790,25	-0,4624			
14	5	28	12	2005	212,39	49051	817,52	-0,4657			
11	41	30	12	2005	212,37	51787	863,12	-0,4670			
12	11	2	1	2006	212,36	56137	935,62	-0,4676			
10	30	4	1	2006	212,34	58916	981,93	-0,4689			
13	14	6	1	2006	212,31	61960	1032,67	-0,4708			
12	56	8	1	2006	212,31	64822	1080,37	-0,4708			
12	44	12	1	2006	212,31	70570	1176,17	-0,4708			
14	20	16	1	2006	212,31	76426	1273,77	-0,4708			
14	23	13	2	2006	212,31	116749	1945,82	-0,4708			

Quadro A2.158 Resultados do ensaio de evaporação do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.

Figura A2.158 Ensaio de evaporação do provete IMC 2.4E, após tratamento e ensaio de envelhecimento.

	PROVETE 3.1E										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	54	24	11	2005	232,65	0	0,00	0,0000			
13	16	24	11	2005	232,65	22	0,37	0,0000			
14	18	24	11	2005	232,56	84	1,40	-0,0058			
17	53	24	11	2005	232,44	299	4,98	-0,0136			
2	28	25	11	2005	232,25	814	13,57	-0,0258			
8	30	25	11	2005	232,10	1176	19,60	-0,0355			
13	37	25	11	2005	232,01	1483	24,72	-0,0413			
21	52	25	11	2005	231,74	1978	32,97	-0,0588			
12	10	26	11	2005	231,31	2836	47,27	-0,0865			
13	36	27	11	2005	230,58	4362	72,70	-0,1337			
20	5	28	11	2005	230,17	6191	103,18	-0,1602			
11	48	29	11	2005	230,05	7134	118,90	-0,1679			
10	29	30	11	2005	229,87	8495	141,58	-0,1796			
11	17	1	12	2005	229,71	9983	166,38	-0,1899			
14	0	2	12	2005	229,57	11586	193,10	-0,1989			
14	42	3	12	2005	229,45	13068	217,80	-0,2067			
13	24	4	12	2005	229,35	14430	240,50	-0,2131			
10	35	5	12	2005	229,26	15701	261,68	-0,2189			
10	44	6	12	2005	229,16	17150	285,83	-0,2254			
11	36	8	12	2005	228,96	20082	334,70	-0,2383			
12	32	9	12	2005	228,87	21578	359,63	-0,2441			
13	13	11	12	2005	228,70	24499	408,32	-0,2551			
10	52	13	12	2005	228,57	27238	453,97	-0,2635			
16	35	14	12	2005	228,50	29021	483,68	-0,2680			
11	48	15	12	2005	228,45	30174	502,90	-0,2713			
14	35	16	12	2005	228,38	31781	529,68	-0,2758			
10	8	19	12	2005	228,24	35834	597,23	-0,2848			
10	0	21	12	2005	228,16	38706	645,10	-0,2900			
13	22	22	12	2005	228,12	40348	672,47	-0,2926			
14	47	23	12	2005	228,09	41873	697,88	-0,2945			
14	38	24	12	2005	228,02	43304	721,73	-0,2990			
11	52	26	12	2005	228,02	46018	766,97	-0,2990			
10	54	27	12	2005	228,01	47400	790,00	-0,2997			
14	9	28	12	2005	228,00	49035	817,25	-0,3003			
11	45	30	12	2005	227,98	51771	862,85	-0,3016			
12	16	2	1	2006	227,96	56122	935,37	-0,3029			
10	34	4	1	2006	227,94	58900	981,67	-0,3042			
13	19	6	1	2006	227,94	61945	1032,42	-0,3042			
12	48	12	1	2006	227,91	70554	1175,90	-0,3061			
14	25	16	1	2006	227,91	76411	1273,52	-0,3061			
14	27	13	2	2006	227,91	116733	1945,55	-0,3061			

Quadro A2.159 Resultados do ensaio de evaporação do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.

Figura A2.159 Ensaio de evaporação do provete IMC 3.1E, após tratamento e ensaio de envelhecimento.

	PROVETE 3.2E										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	35	24	11	2005	233,88	0	0,00	0,0000			
12	56	24	11	2005	233,84	21	0,35	-0,0026			
14	14	24	11	2005	233,80	99	1,65	-0,0052			
17	50	24	11	2005	233,73	315	5,25	-0,0097			
2	21	25	11	2005	233,57	826	13,77	-0,0200			
8	25	25	11	2005	233,42	1190	19,83	-0,0297			
13	33	25	11	2005	233,30	1498	24,97	-0,0375			
21	49	25	11	2005	233,08	1994	33,23	-0,0517			
12	6	26	11	2005	232,79	2851	47,52	-0,0704			
13	34	27	11	2005	232,25	4379	72,98	-0,1053			
20	2	28	11	2005	231,56	6207	103,45	-0,1498			
11	45	29	11	2005	231,33	7150	119,17	-0,1647			
10	26	30	11	2005	231,08	8511	141,85	-0,1808			
11	13	1	12	2005	230,87	9998	166,63	-0,1944			
13	56	2	12	2005	230,69	11601	193,35	-0,2060			
14	40	3	12	2005	230,56	13085	218,08	-0,2144			
13	22	4	12	2005	230,46	14447	240,78	-0,2209			
10	31	5	12	2005	230,37	15716	261,93	-0,2267			
10	40	6	12	2005	230,24	17165	286,08	-0,2351			
11	32	8	12	2005	230,07	20097	334,95	-0,2461			
12	29	9	12	2005	229,98	21594	359,90	-0,2519			
13	10	11	12	2005	229,84	24515	408,58	-0,2609			
10	48	13	12	2005	229,72	27253	454,22	-0,2687			
16	32	14	12	2005	229,63	29037	483,95	-0,2745			
11	45	15	12	2005	229,59	30190	503,17	-0,2771			
14	31	16	12	2005	229,53	31796	529,93	-0,2810			
10	4	19	12	2005	229,39	35849	597,48	-0,2900			
9	56	21	12	2005	229,28	38721	645,35	-0,2971			
13	19	22	12	2005	229,26	40364	672,73	-0,2984			
14	43	23	12	2005	229,23	41888	698,13	-0,3003			
14	36	24	12	2005	229,20	43321	722,02	-0,3023			
11	48	26	12	2005	229,15	46033	767,22	-0,3055			
10	50	27	12	2005	229,13	47415	790,25	-0,3068			
14	6	28	12	2005	229,13	49051	817,52	-0,3068			
11	41	30	12	2005	229,10	51786	863,10	-0,3087			
12	11	2	1	2006	229,09	56136	935,60	-0,3094			
10	30	4	1	2006	229,07	58915	981,92	-0,3107			
13	14	6	1	2006	229,06	61959	1032,65	-0,3113			
12	56	8	1	2006	229,06	64821	1080,35	-0,3113			
12	44	12	1	2006	229,05	70569	1176,15	-0,3120			
14	20	16	1	2006	229,05	76425	1273,75	-0,3120			
14	24	13	2	2006	229,04	116749	1945,82	-0,3126			

Quadro A2.160 Resultados do ensaio de evaporação do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.

Figura A2.160 Ensaio de evaporação do provete IMC 3.2E, após tratamento e ensaio de envelhecimento.

PROVETE 4.1E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
11	48	24	11	2005	232,42	0	0,00	0,0000	
11	57	24	11	2005	232,41	9	0,15	-0,0006	
14	13	24	11	2005	232,41	145	2,42	-0,0006	
17	48	24	11	2005	232,40	360	6,00	-0,0013	
2	18	25	11	2005	232,39	870	14,50	-0,0019	
8	23	25	11	2005	232,35	1235	20,58	-0,0045	
21	47	25	11	2005	232,32	2039	33,98	-0,0065	
12	4	26	11	2005	232,30	2896	48,27	-0,0078	
13	33	27	11	2005	232,25	4425	73,75	-0,0110	
20	0	28	11	2005	232,18	6252	104,20	-0,0155	
11	43	29	11	2005	232,13	7195	119,92	-0,0187	
10	25	30	11	2005	232,09	8557	142,62	-0,0213	
11	11	1	12	2005	232,03	10043	167,38	-0,0252	
13	54	2	12	2005	231,97	11646	194,10	-0,0291	
14	38	3	12	2005	231,93	13130	218,83	-0,0316	
13	20	4	12	2005	231,87	14492	241,53	-0,0355	
10	29	5	12	2005	231,83	15761	262,68	-0,0381	
10	39	6	12	2005	231,75	17211	286,85	-0,0433	
11	30	8	12	2005	231,65	20142	335,70	-0,0497	
12	27	9	12	2005	231,60	21639	360,65	-0,0530	
13	9	11	12	2005	231,45	24561	409,35	-0,0626	
10	46	13	12	2005	231,37	27298	454,97	-0,0678	
16	30	14	12	2005	231,29	29082	484,70	-0,0730	
11	43	15	12	2005	231,24	30235	503,92	-0,0762	
14	29	16	12	2005	231,17	31841	530,68	-0,0807	
10	2	19	12	2005	231,01	35894	598,23	-0,0911	
9	54	21	12	2005	230,91	38766	646,10	-0,0975	
13	17	22	12	2005	230,84	40409	673,48	-0,1020	
14	41	23	12	2005	230,75	41933	698,88	-0,1079	
14	34	24	12	2005	230,71	43366	722,77	-0,1104	
11	46	26	12	2005	230,60	46078	767,97	-0,1175	
10	48	27	12	2005	230,57	47460	791,00	-0,1195	
14	4	28	12	2005	230,48	49096	818,27	-0,1253	
14	16	29	12	2005	230,42	50548	842,47	-0,1292	
11	40	30	12	2005	230,35	51832	863,87	-0,1337	
12	10	2	1	2006	230,19	56182	936,37	-0,1440	
10	28	4	1	2006	230,07	58960	982,67	-0,1518	
16	8	5	1	2006	230,00	60740	1012,33	-0,1563	
13	12	6	1	2006	229,96	62004	1033,40	-0,1589	
12	55	8	1	2006	229,84	64867	1081,12	-0,1666	
14	39	10	1	2006	229,69	67851	1130,85	-0,1763	
12	42	12	1	2006	229,57	70614	1176,90	-0,1841	
15	6	13	1	2006	229,51	72198	1203,30	-0,1879	
14	18	16	1	2006	229,38	76470	1274,50	-0,1963	
13	44	18	1	2006	229,26	79316	1321,93	-0,2041	
14	20	20	1	2006	229,16	82232	1370,53	-0,2106	
14	35	21	1	2006	229,10	83687	1394,78	-0,2144	
11	36	23	1	2006	229,02	86388	1439,80	-0,2196	
10	22	26	1	2006	228,89	90634	1510,57	-0,2280	
11	31	27	1	2006	228,88	92143	1535,72	-0,2286	
9	56	30	1	2006	228,78	96368	1606,13	-0,2351	
11	2	31	1	2006	228,75	97874	1631,23	-0,2370	
14	20	2	2	2006	228,72	100952	1682,53	-0,2390	
9	56	3	2	2006	228,70	102128	1702,13	-0,2403	
12	17	4	2	2006	228,69	103709	1728,48	-0,2409	
10	8	7	2	2006	228,66	107900	1798,33	-0,2428	
14	7	8	2	2006	228,67	109579	1826,32	-0,2422	
14	21	13	2	2006	228.65	116793	1946.55	-0.2435	

Quadro A2.161 Resultados do ensaio de evaporação do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.

Figura A2.161 Ensaio de evaporação do provete IMC 4.1E, após tratamento e ensaio de envelhecimento.

PROVETE 4.2E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	28	24	11	2005	232,08	0	0,00	0,0000	
12	45	24	11	2005	232,02	17	0,28	-0,0039	
13	48	24	11	2005	231,98	80	1,33	-0,0065	
17	45	24	11	2005	231,98	317	5,28	-0,0065	
2	14	25	11	2005	231,98	826	13,77	-0,0065	
8	21	25	11	2005	231,98	1193	19,88	-0,0065	
21	45	25	11	2005	231,94	1997	33,28	-0,0090	
12	2	26	11	2005	231,91	2854	47,57	-0,0110	
13	31	27	11	2005	231,92	4383	73,05	-0,0103	
19	58	28	11	2005	231,75	6210	103,50	-0,0213	
11	41	29	11	2005	231,74	7153	119,22	-0,0220	
10	23	30	11	2005	231,67	8515	141,92	-0,0265	
11	8	1	12	2005	231,60	10000	166,67	-0,0310	
13	52	2	12	2005	231,49	11604	193,40	-0,0381	
14	37	3	12	2005	231,46	13089	218,15	-0,0400	
13	19	4	12	2005	231,42	14451	240,85	-0,0426	
10	27	5	12	2005	231,37	15719	261,98	-0,0459	
10	36	6	12	2005	231,30	17168	286,13	-0,0504	
11	27	8	12	2005	231.16	20099	334.98	-0.0594	
12	24	9	12	2005	231.09	21596	359.93	-0.0639	
13	7	11	12	2005	230.95	24519	408.65	-0.0730	
10	44	13	12	2005	230.84	27256	454.27	-0.0801	
16	28	14	12	2005	230.75	29040	484.00	-0.0859	
11	41	15	12	2005	230.68	30193	503.22	-0.0904	
14	26	16	12	2005	230.62	31798	529.97	-0.0943	
9	59	19	12	2005	230.36	35851	597 52	-0 1111	
9	52	21	12	2005	230 25	38724	645 40	-0 1182	
13	13	22	12	2005	230,23	40365	672 75	-0 1234	
14	39	23	12	2005	230.08	41891	698.18	-0.1292	
14	33	24	12	2005	230.01	43325	722.08	-0 1337	
11	43	26	12	2005	229.87	46035	767.25	-0.1427	
10	45	27	12	2005	229.81	47417	790.28	-0.1466	
14	2	28	12	2005	229.73	49054	817.57	-0.1518	
14	14	29	12	2005	229.65	50506	841.77	-0.1569	
11	37	30	12	2005	229.60	51789	863.15	-0.1602	
12	7	2	1	2006	229.38	56139	935.65	-0.1744	
10	25	4	1	2006	229,24	58917	981.95	-0,1834	
16	5	5	1	2006	229.16	60697	1011.62	-0.1886	
13	9	6	1	2006	229.10	61961	1032.68	-0.1925	
12	53	8	1	2006	228.98	64825	1080.42	-0,2002	
14	37	10	1	2006	228.83	67809	1130.15	-0.2099	
12	40	12	1	2006	228.74	70572	1176.20	-0.2157	
15	4	13	1	2006	228.67	72156	1202.60	-0,2202	
14	16	16	1	2006	228.55	76428	1273.80	-0.2280	
13	43	18	1	2006	228.48	79275	1321.25	-0.2325	
14	17	20	1	2006	228,41	82189	1369.82	-0,2370	
14	33	21	1	2006	228.37	83645	1394.08	-0.2396	
11	33	23	1	2006	228.36	86345	1439.08	-0.2403	
10	19	26	1	2006	228.35	90591	1509.85	-0,2409	
11	28	27	1	2006	228.34	92100	1535.00	-0.2416	
9	53	30	1	2006	228.32	96325	1605.42	-0.2428	
10	59	31	1	2006	228,32	97831	1630.52	-0.2428	
14	17	2	2	2006	228.31	100909	1681.82	-0.2435	
9	52	3	2	2006	228.33	102084	1701.40	-0.2422	
10	6	7	2	2006	228,30	107858	1797.63	-0.2428	
14	4	, 8	2	2006	228,32	109536	1825.60	-0.2435	
14	18	13	2	2006	228.30	116750	1945 83	-0.2441	

Quadro A2.162 Resultados do ensaio de evaporação do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.

Figura A2.162 Ensaio de evaporação do provete IMC 4.2E, após tratamento e ensaio de envelhecimento.

PROVETE 4.3E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	30	24	11	2005	234,54	0	0,00	0,0000	
12	45	24	11	2005	234,51	15	0,25	-0,0019	
13	48	24	11	2005	234,49	78	1,30	-0,0032	
17	45	24	11	2005	234,47	315	5,25	-0,0045	
2	14	25	11	2005	234,44	824	13,73	-0,0065	
8	21	25	11	2005	234,42	1191	19,85	-0,0078	
21	45	25	11	2005	234,40	1995	33,25	-0,0090	
12	2	26	11	2005	234,34	2852	47,53	-0,0129	
13	31	27	11	2005	234,32	4381	73,02	-0,0142	
19	58	28	11	2005	234,21	6208	103,47	-0,0213	
11	41	29	11	2005	234,18	7151	119,18	-0,0233	
10	23	30	11	2005	234,09	8513	141,88	-0,0291	
11	8	1	12	2005	233,99	9998	166,63	-0,0355	
13	52	2	12	2005	233,92	11602	193,37	-0,0400	
14	37	3	12	2005	233.82	13087	218,12	-0.0465	
13	19	4	12	2005	233.76	14449	240,82	-0.0504	
10	28	5	12	2005	233.69	15718	261.97	-0.0549	
10	37	6	12	2005	233.60	17167	286.12	-0.0607	
11	28	8	12	2005	233 43	20098	334 97	-0 0717	
12	23	9	12	2005	233 33	21594	359.90	-0.0782	
12	8	, 11	12	2005	233,35	2/5/9	408.63	-0,0702	
10	14	13	12	2005	233,14	27310	450,03	-0,0704	
10	28	13	12	2005	232,77	27234	434,23	-0,1001	
10	20	14	12	2005	232,07	27030	503 18	-0,1000	
	41 50	10	12	2005	232,60	25940	503,18	-0,1124	
9	59	19	12	2005	232,40	30049	597,40	-0,1343	
9	52	21	12	2005	232,29	36722	645,37	-0,1453	
13	14	22	12	2005	232,19	40364	072,73	-0,1518	
14	39	23	12	2005	232,11	41889	098,15	-0,1569	
14	33	24	12	2005	232,01	43323	722,05	-0,1034	
11	44	20	12	2005	231,88	46034	707,23	-0,1718	
10	45	27	12	2005	231,79	47415	790,25	-0,1776	
14	2	28	12	2005	231,/1	49052	817,53	-0,1828	
14	14	29	12	2005	231,62	50504	841,73	-0,1886	
11	37	30	12	2005	231,55	51/8/	863,12	-0,1931	
12	8	2	1	2006	231,34	56138	935,63	-0,2067	
10	26	4	1	2006	231,22	58916	981,93	-0,2144	
16	6	5	1	2006	231,15	60696	1011,60	-0,2189	
13	9	6	1	2006	231,12	61959	1032,65	-0,2209	
12	54	8	1	2006	231,03	64824	1080,40	-0,2267	
14	37	10	1	2006	230,95	6/807	1130,12	-0,2319	
12	40	12	1	2006	230,93	/05/0	11/6,17	-0,2332	
15	4	13	1	2006	230,92	72154	1202,57	-0,2338	
14	16	16	1	2006	230,90	76426	1273,77	-0,2351	
13	43	18	1	2006	230,89	79273	1321,22	-0,2357	
14	18	20	1	2006	230,88	82188	1369,80	-0,2364	
14	34	21	1	2006	230,88	83644	1394,07	-0,2364	
11	34	23	1	2006	230,88	86344	1439,07	-0,2364	
10	19	26	1	2006	230,87	90589	1509,82	-0,2370	
11	28	27	1	2006	230,87	92098	1534,97	-0,2370	
9	53	30	1	2006	230,87	96323	1605,38	-0,2370	
11	0	31	1	2006	230,87	97830	1630,50	-0,2370	
14	18	2	2	2006	230,87	100908	1681,80	-0,2370	
9	53	3	2	2006	230,87	102083	1701,38	-0,2370	
10	6	7	2	2006	230,87	107856	1797,60	-0,2370	
14	5	8	2	2006	230,87	109535	1825,58	-0,2370	
12	9	10	2	2006	230,87	112299	1871,65	-0,2370	
14	18	13	2	2006	230,87	116748	1945,80	-0,2370	

Quadro A2.163 Resultados do ensaio de evaporação do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.

Figura A2.163 Ensaio de evaporação do provete IMC 4.3E, após tratamento e ensaio de envelhecimento.

	PROVETE 4.4E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
11	54	24	11	2005	235,00	0	0,00	0,0000		
11	57	24	11	2005	235,00	3	0,05	0,0000		
14	13	24	11	2005	234,99	139	2,32	-0,0006		
17	48	24	11	2005	234,97	354	5,90	-0,0019		
2	19	25	11	2005	234,93	865	14,42	-0,0045		
8	24	25	11	2005	234,92	1230	20,50	-0,0052		
21	47	25	11	2005	234,87	2033	33,88	-0,0084		
12	5	26	11	2005	234,81	2891	48,18	-0,0123		
13	33	27	11	2005	234,78	4419	73,65	-0,0142		
20	1	28	11	2005	234,66	6247	104,12	-0,0220		
11	43	29	11	2005	234,63	7189	119,82	-0,0239		
10	25	30	11	2005	234,58	8551	142,52	-0,0271		
11	11	1	12	2005	234,51	10037	167,28	-0,0316		
13	55	2	12	2005	234,43	11641	194,02	-0,0368		
14	39	3	12	2005	234,37	13125	218,75	-0,0407		
13	21	4	12	2005	234,30	14487	241,45	-0,0452		
10	30	5	12	2005	234,24	15756	262,60	-0,0491		
10	39	6	12	2005	234,18	17205	286,75	-0,0530		
11	30	8	12	2005	234,03	20136	335,60	-0,0626		
12	28	9	12	2005	233,93	21634	360,57	-0,0691		
13	9	11	12	2005	233,77	24555	409,25	-0,0794		
10	47	13	12	2005	233.64	27293	454,88	-0.0878		
16	30	14	12	2005	233,54	29076	484,60	-0,0943		
11	43	15	12	2005	233,46	30229	503,82	-0,0995		
14	29	16	12	2005	233,40	31835	530,58	-0,1033		
10	3	19	12	2005	233,13	35889	598,15	-0,1208		
9	55	21	12	2005	232,97	38761	646,02	-0,1311		
13	17	22	12	2005	232,85	40403	673,38	-0,1389		
14	42	23	12	2005	232,76	41928	698,80	-0,1447		
14	35	24	12	2005	232,66	43361	722,68	-0,1511		
11	47	26	12	2005	232,51	46073	767,88	-0,1608		
10	48	27	12	2005	232,44	47454	790,90	-0,1653		
14	5	28	12	2005	232,34	49091	818,18	-0,1718		
14	17	29	12	2005	232,24	50543	842,38	-0,1783		
11	40	30	12	2005	232,17	51826	863,77	-0,1828		
12	10	2	1	2006	231,95	56176	936,27	-0,1970		
10	29	4	1	2006	231,83	58955	982,58	-0,2047		
16	8	5	1	2006	231,77	60734	1012,23	-0,2086		
13	13	6	1	2006	231,73	61999	1033,32	-0,2112		
12	55	8	1	2006	231,64	64861	1081,02	-0,2170		
14	40	10	1	2006	231,57	67846	1130,77	-0,2215		
12	43	12	1	2006	231,54	70609	1176,82	-0,2235		
15	7	13	1	2006	231,50	72193	1203,22	-0,2261		
14	19	16	1	2006	231,47	76465	1274,42	-0,2280		
13	44	18	1	2006	231,46	79310	1321,83	-0,2286		
14	21	20	1	2006	231,46	82227	1370,45	-0,2286		
14	35	21	1	2006	231,45	83681	1394,68	-0,2293		
11	36	23	1	2006	231,45	86382	1439,70	-0,2293		
10	22	26	1	2006	231,44	90628	1510,47	-0,2299		
11	31	27	1	2006	231,44	92137	1535,62	-0,2299		
9	56	30	1	2006	231,44	96362	1606,03	-0,2299		
11	2	31	1	2006	231,44	97868	1631,13	-0,2299		
14	21	2	2	2006	231,44	100947	1682,45	-0,2299		
9	56	3	2	2006	231,44	102122	1702,03	-0,2299		
12	17	4	2	2006	231,44	103703	1728,38	-0,2299		
10	9	7	2	2006	231,44	107895	1798,25	-0,2299		
14	7	8	2	2006	231,44	109573	1826,22	-0,2299		
12	12	10	2	2006	231,44	112338	1872,30	-0,2299		
14	22	13	2	2006	231,44	116788	1946,47	-0,2299		

Quadro A2.164 Resultados do ensaio de evaporação do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.

Figura A2.164 Ensaio de evaporação do provete IMC 4.4E, após tratamento e ensaio de envelhecimento.

PROVETE 5.1E								
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S
11	56	24	11	2005	233,53	0	0,00	0,0000
11	58	24	11	2005	233,52	2	0,03	-0,0006
14	14	24	11	2005	233,52	138	2,30	-0,0006
17	49	24	11	2005	233,48	353	5,88	-0,0032
2	20	25	11	2005	233,47	864	14,40	-0,0039
8	24	25	11	2005	233,45	1228	20,47	-0,0052
21	48	25	11	2005	233,43	2032	33,87	-0,0065
12	5	26	11	2005	233,34	2889	48,15	-0,0123
13	33	27	11	2005	233,30	4417	73,62	-0,0149
20	1	28	11	2005	233,25	6245	104,08	-0,0181
11	44	29	11	2005	233,21	7188	119,80	-0,0207
10	25	30	11	2005	233,14	8549	142,48	-0,0252
11	12	1	12	2005	233,07	10036	167,27	-0,0297
13	55	2	12	2005	233,00	11639	193,98	-0,0342
14	39	3	12	2005	232,93	13123	218,72	-0,0388
13	21	4	12	2005	232,86	14485	241,42	-0,0433
10	30	5	12	2005	232,83	15754	262,57	-0,0452
10	40	6	12	2005	232,77	17204	286,73	-0,0491
11	31	8	12	2005	232,62	20135	335,58	-0,0588
12	28	9	12	2005	232,54	21632	360,53	-0,0639
13	10	11	12	2005	232,40	24554	409,23	-0,0730
10	47	13	12	2005	232,28	27291	454,85	-0,0807
16	31	14	12	2005	232,19	29075	484,58	-0,0865
11	44	15	12	2005	232,13	30228	503,80	-0,0904
14	30	16	12	2005	232,05	31834	530,57	-0,0956
10	خ 5	19	12	2005	231,85	35887	598,12	-0,1085
7	50	21	12	2005	231,71	38/37	645,98	-0,11/5
13	10	22	12	2005	231,02	40402	6/3,3/	-0,1234
14	42	23	12	2005	231,00	41920	722 45	-0,1252
14	33	24	12	2003	231,43	43307	767.85	-0,1330
10	49	20	12	2005	231,34	47453	790.88	-0,1460
14		28	12	2005	231.18	49089	818 15	-0,1518
14	17	29	12	2005	231.09	50541	842.35	-0,1576
11	40	30	12	2005	231.00	51824	863.73	-0,1634
12	10	2	1	2006	230,78	56174	936,23	-0,1776
10	29	4	1	2006	230,66	58953	982,55	-0,1854
16	8	5	1	2006	230,57	60732	1012,20	-0,1912
13	13	6	1	2006	230,53	61997	1033,28	-0,1938
12	56	8	1	2006	230,38	64860	1081,00	-0,2034
14	40	10	1	2006	230,22	67844	1130,73	-0,2138
12	43	12	1	2006	230,11	70607	1176,78	-0,2209
15	7	13	1	2006	230,07	72191	1203,18	-0,2235
14	19	16	1	2006	229,91	76463	1274,38	-0,2338
13	44	18	1	2006	229,83	79308	1321,80	-0,2390
14	22	20	1	2006	229,76	82226	1370,43	-0,2435
14	36	21	1	2006	229,70	83680	1394,67	-0,2474
11	37	23	1	2006	229,68	86381	1439,68	-0,2487
10	22	26	1	2006	229,64	90626	1510,43	-0,2512
11	31	27	1	2006	229,63	92135	1535,58	-0,2519
9	56	30	1	2006	229,63	96360	1606,00	-0,2519
11	3	31	1	2006	229,63	97867	1631,12	-0,2519
14	21	2	2	2006	229,63	100945	1682,42	-0,2519
9	57	3	2	2006	229,63	102121	1702,02	-0,2519
12	1/	4	2	2006	229,63	103701	1728,35	-0,2519
10	9	/	2	2006	229,63	10/893	1/98,22	-0,2519
14	8	8	2	2006	229,63	109572	1826,20	-0,2519
12	12	10	2	2006	229,63	112336	18/2,2/	-0,2519
14	22	13	2	2006	229,61	116786	1946,43	-0,2532

Quadro A2.165 Resultados do ensaio de evaporação do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.

Figura A2.165 Ensaio de evaporação do provete IMC 5.1E, após tratamento e ensaio de envelhecimento.

PROVETE 5.2E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	31	24	11	2005	232,05	0	0,00	0,0000	
12	46	24	11	2005	232,05	15	0,25	0,0000	
13	50	24	11	2005	232,05	79	1,32	0,0000	
17	46	24	11	2005	232,05	315	5,25	0,0000	
2	15	25	11	2005	232,02	824	13,73	-0,0019	
8	21	25	11	2005	231,99	1190	19,83	-0,0039	
21	46	25	11	2005	231,96	1995	33,25	-0,0058	
12	2	26	11	2005	231,92	2851	47,52	-0,0084	
13	32	27	11	2005	231,83	4381	73,02	-0,0142	
19	58	28	11	2005	231,77	6207	103,45	-0,0181	
11	41	29	11	2005	231,71	7150	119,17	-0,0220	
10	24	30	11	2005	231,64	8513	141,88	-0,0265	
11	9	1	12	2005	231,56	9998	166,63	-0,0316	
13	52	2	12	2005	231,49	11601	193,35	-0,0362	
14	37	3	12	2005	231,40	13086	218,10	-0,0420	
13	19	4	12	2005	231,36	14448	240,80	-0,0446	
10	28	5	12	2005	231,29	15717	261,95	-0,0491	
10	37	6	12	2005	231,20	17166	286,10	-0,0549	
11	28	8	12	2005	231,05	20097	334,95	-0,0646	
12	25	9	12	2005	230,97	21594	359,90	-0,0698	
13	8	11	12	2005	230,81	24517	408,62	-0,0801	
10	44	13	12	2005	230,67	27253	454,22	-0,0891	
16	29	14	12	2005	230,56	29038	483,97	-0,0962	
11	41	15	12	2005	230.50	30190	503.17	-0.1001	
14	27	16	12	2005	230.44	31796	529.93	-0.1040	
10	0	19	12	2005	230.19	35849	597,48	-0.1201	
9	52	21	12	2005	230.05	38721	645.35	-0.1292	
13	14		12	2005	229.95	40363	672.72	-0.1356	
14	40	23	12	2005	229.86	41889	698.15	-0.1414	
14	33	24	12	2005	229.78	43322	722.03	-0.1466	
11	44	26	12	2005	229.65	46033	767.22	-0,1550	
10	46	27	12	2005	229.56	47415	790.25	-0.1608	
14	2	28	12	2005	229,47	49051	817,52	-0,1666	
14	14	29	12	2005	229,40	50503	841,72	-0,1712	
11	38	30	12	2005	229,32	51787	863,12	-0,1763	
12	8	2	1	2006	229,11	56137	935,62	-0,1899	
10	26	4	1	2006	228,94	58915	981,92	-0,2009	
16	6	5	1	2006	228.87	60695	1011.58	-0,2054	
13	10	6	1	2006	228,78	61959	1032,65	-0,2112	
12	54	8	1	2006	228,65	64823	1080,38	-0,2196	
14	38	10	1	2006	228,51	67807	1130,12	-0,2286	
12	41	12	1	2006	228.36	70570	1176.17	-0,2383	
14	17	16	1	2006	228,17	76426	1273,77	-0,2506	
13	43	18	1	2006	228.10	79272	1321.20	-0.2551	
14	18	20	1	2006	228.05	82187	1369.78	-0.2583	
14	34	21	1	2006	228.05	83643	1394.05	-0.2583	
11	34	23	1	2006	228.00	86343	1439.05	-0.2616	
10	20	26	1	2006	228,01	90589	1509,82	-0,2609	
11	29	27	1	2006	228.01	92098	1534.97	-0.2609	
9	54	30	1	2006	228.01	96323	1605.38	-0.2609	
11	0	31	1	2006	227.98	97829	1630,48	-0.2629	
14	18	2	2	2006	227,98	100907	1681,78	-0,2629	
9	53	3	2	2006	227.98	102082	1701.37	-0.2629	
10	7	7	2	2006	227.98	107856	1797.60	-0.2629	
14	5	, 8	2	2006	227.99	109534	1825.57	-0.2622	
12	10	10	2	2006	227.98	112299	1871.65	-0.2629	
14	19	13	2	2006	227.98	116748	1945.80	-0.2629	

Quadro A2.166 Resultados do ensaio de evaporação do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.

Figura A2.166 Ensaio de evaporação do provete IMC 5.2E, após tratamento e ensaio de envelhecimento.

PROVETE 5.3E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	55	24	11	2005	232,86	0	0,00	0,0000	
13	17	24	11	2005	232,86	22	0,37	0,0000	
14	19	24	11	2005	232,75	84	1,40	-0,0071	
17	54	24	11	2005	232,65	299	4,98	-0,0136	
2	28	25	11	2005	232,45	813	13,55	-0,0265	
8	30	25	11	2005	232,30	1175	19,58	-0,0362	
13	37	25	11	2005	232,18	1482	24,70	-0,0439	
21	53	25	11	2005	231,97	1978	32,97	-0,0575	
12	10	26	11	2005	231,62	2835	47,25	-0,0801	
13	37	27	11	2005	230,97	4362	72,70	-0,1221	
20	6	28	11	2005	230,26	6191	103,18	-0,1679	
11	49	29	11	2005	230,11	7134	118,90	-0,1776	
10	29	30	11	2005	229,91	8494	141,57	-0,1905	
11	17	1	12	2005	229,71	9982	166,37	-0,2034	
14	0	2	12	2005	229,54	11585	193,08	-0,2144	
14	42	3	12	2005	229,39	13067	217,78	-0,2241	
13	24	4	12	2005	229,29	14429	240,48	-0,2306	
10	35	5	12	2005	229,21	15700	261,67	-0,2357	
10	44	6	12	2005	229,09	17149	285,82	-0,2435	
11	36	8	12	2005	228,88	20081	334,68	-0,2571	
12	33	9	12	2005	228,84	21578	359,63	-0,2596	
13	13	11	12	2005	228,66	24498	408,30	-0,2713	
10	52	13	12	2005	228,55	27237	453,95	-0,2784	
16	36	14	12	2005	228,48	29021	483,68	-0,2829	
11	49	15	12	2005	228,47	30174	502,90	-0,2835	
14	35	16	12	2005	228,39	31780	529,67	-0,2887	
10	8	19	12	2005	228,30	35833	597,22	-0,2945	
10	0	21	12	2005	228,26	38705	645,08	-0,2971	
13	23	22	12	2005	228,23	40348	672,47	-0,2990	
14	48	23	12	2005	228,22	41873	697,88	-0,2997	
14	38	24	12	2005	228,22	43303	721,72	-0,2997	
11	52	26	12	2005	228,22	46017	766,95	-0,2997	
10	54	27	12	2005	228,22	47399	789,98	-0,2997	
14	9	28	12	2005	228,21	49034	817,23	-0,3003	
11	45	30	12	2005	228,20	51770	862,83	-0,3010	
12	16	2	1	2006	228,20	56121	935,35	-0,3010	
10	35	4	1	2006	228,20	58900	981,67	-0,3010	
13	20	6	1	2006	228,20	61945	1032,42	-0,3010	
12	49	12	1	2006	228,20	70554	1175,90	-0,3010	
14	25	16	1	2006	228,20	76410	1273,50	-0,3010	
14	28	13	2	2006	228,20	116733	1945,55	-0,3010	

Quadro A2.167 Resultados do ensaio de evaporação do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.

Figura A2.167 Ensaio de evaporação do provete IMC 5.3E, após tratamento e ensaio de envelhecimento.

PROVETE 5.4E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	36	24	11	2005	231,93	0	0,00	0,0000	
12	57	24	11	2005	231,89	21	0,35	-0,0026	
14	15	24	11	2005	231,86	99	1,65	-0,0045	
17	50	24	11	2005	231,76	314	5,23	-0,0110	
2	22	25	11	2005	231,61	826	13,77	-0,0207	
8	26	25	11	2005	231,41	1190	19,83	-0,0336	
13	34	25	11	2005	231,31	1498	24,97	-0,0400	
21	50	25	11	2005	231,12	1994	33,23	-0,0523	
12	7	26	11	2005	230,82	2851	47,52	-0,0717	
13	34	27	11	2005	230,31	4378	72,97	-0,1046	
20	2	28	11	2005	229,49	6206	103,43	-0,1576	
11	45	29	11	2005	229,12	7149	119,15	-0,1815	
10	26	30	11	2005	228,78	8510	141,83	-0,2034	
11	13	1	12	2005	228,55	9997	166,62	-0,2183	
13	56	2	12	2005	228,36	11600	193,33	-0,2306	
14	40	3	12	2005	228,22	13084	218,07	-0,2396	
13	22	4	12	2005	228,11	14446	240,77	-0,2467	
10	32	5	12	2005	228,04	15716	261,93	-0,2512	
10	41	6	12	2005	227,95	17165	286,08	-0,2571	
11	32	8	12	2005	227,76	20096	334,93	-0,2693	
12	29	9	12	2005	227,69	21593	359,88	-0,2738	
13	10	11	12	2005	227,57	24514	408,57	-0,2816	
10	48	13	12	2005	227,47	27252	454,20	-0,2881	
16	32	14	12	2005	227,38	29036	483,93	-0,2939	
11	45	15	12	2005	227,37	30189	503,15	-0,2945	
14	31	16	12	2005	227,29	31795	529,92	-0,2997	
10	5	19	12	2005	227,18	35849	597,48	-0,3068	
9	56	21	12	2005	227,11	38720	645,33	-0,3113	
13	19	22	12	2005	227,09	40363	672,72	-0,3126	
14	44	23	12	2005	227,07	41888	698,13	-0,3139	
14	36	24	12	2005	227,06	43320	722,00	-0,3145	
11	48	26	12	2005	227,06	46032	767,20	-0,3145	
10	50	27	12	2005	227,06	47414	790,23	-0,3145	
14	6	28	12	2005	227,05	49050	817,50	-0,3152	
11	42	30	12	2005	227,05	51786	863,10	-0,3152	
12	12	2	1	2006	227,05	56136	935,60	-0,3152	
10	31	4	1	2006	227,04	58915	981,92	-0,3158	
13	15	6	1	2006	227,04	61959	1032,65	-0,3158	
12	57	8	1	2006	227,04	64821	1080,35	-0,3158	
12	44	12	1	2006	227,04	70568	1176,13	-0,3158	
14	21	16	1	2006	227,04	76425	1273,75	-0,3158	
14	24	13	2	2006	227,04	116748	1945,80	-0,3158	

Quadro A2.168 Resultados do ensaio de evaporação do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.

Figura A2.168 Ensaio de evaporação do provete IMC 5.4E, após tratamento e ensaio de envelhecimento.

PROVETE 6.1E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
13	6	24	11	2005	236,67	0	0,00	0,0000	
13	28	24	11	2005	236,62	22	0,37	-0,0032	
14	19	24	11	2005	236,55	73	1,22	-0,0078	
17	54	24	11	2005	236,42	288	4,80	-0,0161	
2	33	25	11	2005	235,98	807	13,45	-0,0446	
8	31	25	11	2005	235,74	1165	19,42	-0,0601	
13	38	25	11	2005	235,52	1472	24,53	-0,0743	
21	53	25	11	2005	235,28	1967	32,78	-0,0898	
12	11	26	11	2005	235,09	2825	47,08	-0,1020	
13	37	27	11	2005	234,89	4351	72,52	-0,1150	
20	6	28	11	2005	234,76	6180	103,00	-0,1234	
11	49	29	11	2005	234,68	7123	118,72	-0,1285	
10	29	30	11	2005	234,58	8483	141,38	-0,1350	
11	18	1	12	2005	234,49	9972	166,20	-0,1408	
14	1	2	12	2005	234,41	11575	192,92	-0,1460	
14	31	3	12	2005	234,30	13045	217,42	-0,1531	
13	25	4	12	2005	234,28	14419	240,32	-0,1544	
10	36	5	12	2005	234,21	15690	261,50	-0,1589	
10	45	6	12	2005	234,14	17139	285,65	-0,1634	
11	36	8	12	2005	234,06	20070	334,50	-0,1686	
12	33	9	12	2005	233,99	21567	359,45	-0,1731	
13	13	11	12	2005	233,88	24487	408,12	-0,1802	
10	53	13	12	2005	233,81	27227	453,78	-0,1847	
16	36	14	12	2005	233,75	29010	483,50	-0,1886	
11	49	15	12	2005	233,71	30163	502,72	-0,1912	
14	36	16	12	2005	233,68	31770	529,50	-0,1931	
10	9	19	12	2005	233,57	35823	597,05	-0,2002	
10	1	21	12	2005	233,53	38695	644,92	-0,2028	
13	23	22	12	2005	233,50	40337	672,28	-0,2047	
14	48	23	12	2005	233,46	41862	697,70	-0,2073	
14	39	24	12	2005	233,44	43293	721,55	-0,2086	
11	53	26	12	2005	233,41	46007	766,78	-0,2106	
10	55	27	12	2005	233,44	47389	789,82	-0,2086	
14	10	28	12	2005	233,40	49024	817,07	-0,2112	
11	46	30	12	2005	233,40	51760	862,67	-0,2112	
10	35	4	1	2006	233,40	58889	981,48	-0,2112	
13	20	6	1	2006	233,40	61934	1032,23	-0,2112	
12	49	12	1	2006	233,39	70543	1175,72	-0,2118	
14	26	16	1	2006	233,38	76400	1273,33	-0,2125	
14	28	13	2	2006	233,38	116722	1945,37	-0,2125	

Quadro A2.169 Resultados do ensaio de evaporação do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.

Figura A2.169 Ensaio de evaporação do provete IMC 6.1E, após tratamento e ensaio de envelhecimento.

PROVETE 6.2E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	39	24	11	2005	234,90	0	0,00	0,0000	
12	57	24	11	2005	234,85	18	0,30	-0,0032	
14	15	24	11	2005	234,80	96	1,60	-0,0065	
17	50	24	11	2005	234,71	311	5,18	-0,0123	
2	23	25	11	2005	234,51	824	13,73	-0,0252	
8	26	25	11	2005	234,30	1187	19,78	-0,0388	
13	34	25	11	2005	234,13	1495	24,92	-0,0497	
21	50	25	11	2005	233,91	1991	33,18	-0,0639	
12	7	26	11	2005	233,58	2848	47,47	-0,0853	
13	34	27	11	2005	233,15	4375	72,92	-0,1130	
20	3	28	11	2005	232,96	6204	103,40	-0,1253	
11	45	29	11	2005	232,89	7146	119,10	-0,1298	
10	27	30	11	2005	232,75	8508	141,80	-0,1389	
11	13	1	12	2005	232,67	9994	166,57	-0,1440	
13	57	2	12	2005	232,58	11598	193,30	-0,1498	
14	40	3	12	2005	232,50	13081	218,02	-0,1550	
13	22	4	12	2005	232,47	14443	240,72	-0,1569	
10	32	5	12	2005	232,41	15713	261,88	-0,1608	
10	41	6	12	2005	232,32	17162	286,03	-0,1666	
11	32	8	12	2005	232,21	20093	334,88	-0,1737	
12	30	9	12	2005	232,18	21591	359,85	-0,1757	
13	11	11	12	2005	232,09	24512	408,53	-0,1815	
10	49	13	12	2005	232,00	27250	454,17	-0,1873	
16	32	14	12	2005	231,95	29033	483,88	-0,1905	
11	46	15	12	2005	231,93	30187	503,12	-0,1918	
14	32	16	12	2005	231,89	31793	529,88	-0,1944	
10	5	19	12	2005	231,80	35846	597,43	-0,2002	
9	57	21	12	2005	231,75	38718	645,30	-0,2034	
13	20	22	12	2005	231,72	40361	672,68	-0,2054	
14	44	23	12	2005	231,70	41885	698,08	-0,2067	
14	36	24	12	2005	231,68	43317	721,95	-0,2080	
11	49	26	12	2005	231,66	46030	767,17	-0,2093	
10	51	27	12	2005	231,66	47412	790,20	-0,2093	
14	7	28	12	2005	231,64	49048	817,47	-0,2106	
11	42	30	12	2005	231,64	51783	863,05	-0,2106	
12	12	2	1	2006	231,64	56133	935,55	-0,2106	
10	31	4	1	2006	231,64	58912	981,87	-0,2106	
13	16	6	1	2006	231,62	61957	1032,62	-0,2118	
12	57	8	1	2006	231,62	64818	1080,30	-0,2118	
12	45	12	1	2006	231,62	70566	1176,10	-0,2118	
14	21	16	1	2006	231,62	76422	1273,70	-0,2118	
14	24	13	2	2006	231,62	116745	1945,75	-0,2118	

Quadro A2.170 Resultados do ensaio de evaporação do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.

Figura A2.170 Ensaio de evaporação do provete IMC 6.2E, após tratamento e ensaio de envelhecimento.

PROVETE 6.3E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
13	6	24	11	2005	239,06	0	0,00	0,0000	
13	28	24	11	2005	239,02	22	0,37	-0,0026	
14	20	24	11	2005	238,95	74	1,23	-0,0071	
17	55	24	11	2005	238,85	289	4,82	-0,0136	
2	34	25	11	2005	238,64	808	13,47	-0,0271	
8	31	25	11	2005	238,49	1165	19,42	-0,0368	
13	38	25	11	2005	238,33	1472	24,53	-0,0471	
21	53	25	11	2005	238,12	1967	32,78	-0,0607	
12	11	26	11	2005	237,79	2825	47,08	-0,0820	
13	37	27	11	2005	237,50	4351	72,52	-0,1008	
20	7	28	11	2005	237,33	6181	103,02	-0,1117	
11	50	29	11	2005	237,25	7124	118,73	-0,1169	
10	30	30	11	2005	237,15	8484	141,40	-0,1234	
11	18	1	12	2005	237,06	9972	166,20	-0,1292	
14	1	2	12	2005	236,97	11575	192,92	-0,1350	
14	32	3	12	2005	236,90	13046	217,43	-0,1395	
13	25	4	12	2005	236,84	14419	240,32	-0,1434	
10	36	5	12	2005	236,79	15690	261,50	-0,1466	
10	45	6	12	2005	236,70	17139	285,65	-0,1524	
11	37	8	12	2005	236,60	20071	334,52	-0,1589	
12	34	9	12	2005	236,54	21568	359,47	-0,1628	
13	13	11	12	2005	236,42	24487	408,12	-0,1705	
10	53	13	12	2005	236,37	27227	453,78	-0,1737	
16	36	14	12	2005	236,32	29010	483,50	-0,1770	
11	50	15	12	2005	236,29	30164	502,73	-0,1789	
14	37	16	12	2005	236,26	31771	529,52	-0,1808	
10	9	19	12	2005	236,16	35823	597,05	-0,1873	
10	1	21	12	2005	236,08	38695	644,92	-0,1925	
13	24	22	12	2005	236,04	40338	672,30	-0,1951	
14	49	23	12	2005	236,03	41863	697,72	-0,1957	
14	39	24	12	2005	236,00	43293	721,55	-0,1976	
11	53	26	12	2005	235,98	46007	766,78	-0,1989	
10	55	27	12	2005	235,96	47389	789,82	-0,2002	
14	10	28	12	2005	235,90	49024	817,07	-0,2041	
11	46	30	12	2005	235,90	51760	862,67	-0,2041	
10	35	4	1	2006	235,88	58889	981,48	-0,2054	
13	20	6	1	2006	235,88	61934	1032,23	-0,2054	
12	50	12	1	2006	235,87	70544	1175,73	-0,2060	
14	26	16	1	2006	235,87	76400	1273,33	-0,2060	
14	28	13	2	2006	235,87	116722	1945,37	-0,2060	

Quadro A2.171 Resultados do ensaio de evaporação do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.

Figura A2.171 Ensaio de evaporação do provete IMC 6.3E, após tratamento e ensaio de envelhecimento.

PROVETE 7.1E									
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S	
12	41	24	11	2005	236,07	0	0,00	0,0000	
12	58	24	11	2005	236,02	17	0,28	-0,0032	
14	16	24	11	2005	235,97	95	1,58	-0,0065	
17	51	24	11	2005	235,89	310	5,17	-0,0116	
2	23	25	11	2005	235,73	822	13,70	-0,0220	
8	27	25	11	2005	235,57	1186	19,77	-0,0323	
13	34	25	11	2005	235,44	1493	24,88	-0,0407	
21	50	25	11	2005	235,27	1989	33,15	-0,0517	
12	7	26	11	2005	235,01	2846	47,43	-0,0685	
13	34	27	11	2005	234,55	4373	72,88	-0,0982	
20	3	28	11	2005	234,04	6202	103,37	-0,1311	
11	46	29	11	2005	233,93	7145	119,08	-0,1382	
10	27	30	11	2005	233,81	8506	141,77	-0,1460	
11	14	1	12	2005	233,71	9993	166,55	-0,1524	
13	57	2	12	2005	233,61	11596	193,27	-0,1589	
14	40	3	12	2005	233,55	13079	217,98	-0,1628	
13	22	4	12	2005	233,49	14441	240,68	-0,1666	
10	32	5	12	2005	233,43	15711	261,85	-0,1705	
10	41	6	12	2005	233,38	17160	286,00	-0,1737	
11	33	8	12	2005	233,28	20092	334,87	-0,1802	
12	30	9	12	2005	233,23	21589	359,82	-0,1834	
13	11	11	12	2005	233,15	24510	408,50	-0,1886	
10	49	13	12	2005	233,02	27248	454,13	-0,1970	
16	33	14	12	2005	233,02	29032	483,87	-0,1970	
11	46	15	12	2005	233,00	30185	503,08	-0,1983	
14	32	16	12	2005	232,96	31791	529,85	-0,2009	
10	5	19	12	2005	232,87	35844	597,40	-0,2067	
9	57	21	12	2005	232,82	38716	645,27	-0,2099	
13	20	22	12	2005	232,78	40359	672,65	-0,2125	
14	45	23	12	2005	232,76	41884	698,07	-0,2138	
14	36	24	12	2005	232,73	43315	721,92	-0,2157	
11	49	26	12	2005	232,70	46028	767,13	-0,2177	
10	51	27	12	2005	232,67	47410	790,17	-0,2196	
14	7	28	12	2005	232,65	49046	817,43	-0,2209	
11	42	30	12	2005	232,63	51781	863,02	-0,2222	
12	13	2	1	2006	232,61	56132	935,53	-0,2235	
10	31	4	1	2006	232,60	58910	981,83	-0,2241	
13	16	6	1	2006	232,58	61955	1032,58	-0,2254	
12	57	8	1	2006	232,58	64816	1080,27	-0,2254	
12	45	12	1	2006	232,58	70564	1176,07	-0,2254	
14	22	16	1	2006	232,58	76421	1273,68	-0,2254	
14	25	13	2	2006	232,57	116744	1945,73	-0,2261	

Quadro A2.172 Resultados do ensaio de evaporação do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.

Figura A2.172 Ensaio de evaporação do provete IMC 7.1E, após tratamento e ensaio de envelhecimento.
	PROVETE 7.2E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
13	9	24	11	2005	236,98	0	0,00	0,0000				
13	29	24	11	2005	236,94	20	0,33	-0,0026				
14	20	24	11	2005	236,88	71	1,18	-0,0065				
17	55	24	11	2005	236,77	286	4,77	-0,0136				
2	35	25	11	2005	236,59	806	13,43	-0,0252				
8	32	25	11	2005	236,46	1163	19,38	-0,0336				
13	39	25	11	2005	236,29	1470	24,50	-0,0446				
21	53	25	11	2005	236,09	1964	32,73	-0,0575				
12	12	26	11	2005	235,78	2823	47,05	-0,0775				
13	38	27	11	2005	235,34	4349	72,48	-0,1059				
20	7	28	11	2005	235,18	6178	102,97	-0,1163				
11	50	29	11	2005	235,11	7121	118,68	-0,1208				
10	30	30	11	2005	235,01	8481	141,35	-0,1272				
11	18	1	12	2005	234,91	9969	166,15	-0,1337				
14	1	2	12	2005	234,83	11572	192,87	-0,1389				
14	33	3	12	2005	234,77	13044	217,40	-0,1427				
13	25	4	12	2005	234,70	14416	240,27	-0,1473				
10	36	5	12	2005	234,66	15687	261,45	-0,1498				
10	45	6	12	2005	234,60	17136	285,60	-0,1537				
11	37	8	12	2005	234,46	20068	334,47	-0,1628				
12	34	9	12	2005	234,43	21565	359,42	-0,1647				
13	14	11	12	2005	234,32	24485	408,08	-0,1718				
10	53	13	12	2005	234,25	27224	453,73	-0,1763				
16	37	14	12	2005	234,19	29008	483,47	-0,1802				
11	50	15	12	2005	234,16	30161	502,68	-0,1821				
14	37	16	12	2005	234,12	31768	529,47	-0,1847				
10	10	19	12	2005	234,03	35821	597,02	-0,1905				
10	1	21	12	2005	233,97	38692	644,87	-0,1944				
13	24	22	12	2005	233,91	40335	672,25	-0,1983				
14	49	23	12	2005	233,90	41860	697,67	-0,1989				
14	39	24	12	2005	233,84	43290	721,50	-0,2028				
11	54	26	12	2005	233,84	46005	766,75	-0,2028				
10	56	27	12	2005	233,83	47387	789,78	-0,2034				
14	11	28	12	2005	233,79	49022	817,03	-0,2060				
11	47	30	12	2005	233,79	51758	862,63	-0,2060				
10	36	4	1	2006	233,77	58887	981,45	-0,2073				
13	21	6	1	2006	233,76	61932	1032,20	-0,2080				
12	50	12	1	2006	233,76	70541	1175,68	-0,2080				
14	26	16	1	2006	233,76	76397	1273,28	-0,2080				
14	29	13	2	2006	233,76	116720	1945,33	-0,2080				

Quadro A2.173 Resultados do ensaio de evaporação do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.

Figura A2.173 Ensaio de evaporação do provete IMC 7.2E, após tratamento e ensaio de envelhecimento.

PROVETE 7.3E										
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S		
12	42	24	11	2005	236,66	0	0,00	0,0000		
12	58	24	11	2005	236,62	16	0,27	-0,0026		
14	16	24	11	2005	236,56	94	1,57	-0,0065		
17	51	24	11	2005	236,46	309	5,15	-0,0129		
2	24	25	11	2005	236,31	822	13,70	-0,0226		
8	27	25	11	2005	236,16	1185	19,75	-0,0323		
13	35	25	11	2005	236,03	1493	24,88	-0,0407		
21	51	25	11	2005	235,88	1989	33,15	-0,0504		
12	8	26	11	2005	235,65	2846	47,43	-0,0652		
13	35	27	11	2005	235,29	4373	72,88	-0,0885		
20	4	28	11	2005	234,73	6202	103,37	-0,1247		
11	46	29	11	2005	234,63	7144	119,07	-0,1311		
10	27	30	11	2005	234,54	8505	141,75	-0,1369		
11	14	1	12	2005	234,44	9992	166,53	-0,1434		
13	58	2	12	2005	234,35	11596	193,27	-0,1492		
14	41	3	12	2005	234,28	13079	217,98	-0,1537		
13	23	4	12	2005	234,21	14441	240,68	-0,1582		
10	33	5	12	2005	234,16	15711	261,85	-0,1615		
10	42	6	12	2005	234,10	17160	286,00	-0,1653		
11	33	8	12	2005	233,98	20091	334,85	-0,1731		
12	30	9	12	2005	233,95	21588	359,80	-0,1750		
13	11	11	12	2005	233,82	24509	408,48	-0,1834		
10	49	13	12	2005	233,76	27247	454,12	-0,1873		
16	33	14	12	2005	233,71	29031	483,85	-0,1905		
11	46	15	12	2005	233,67	30184	503,07	-0,1931		
14	33	16	12	2005	233,64	31791	529,85	-0,1951		
10	6	19	12	2005	233,56	35844	597,40	-0,2002		
9	58	21	12	2005	233,52	38716	645,27	-0,2028		
13	20	22	12	2005	233,46	40358	672,63	-0,2067		
14	45	23	12	2005	233,45	41883	698,05	-0,2073		
14	37	24	12	2005	233,43	43315	721,92	-0,2086		
11	50	26	12	2005	233,42	46028	767,13	-0,2093		
10	51	27	12	2005	233,41	47409	790,15	-0,2099		
14	7	28	12	2005	233,41	49045	817,42	-0,2099		
11	43	30	12	2005	233,41	51781	863,02	-0,2099		
12	13	2	1	2006	233,39	56131	935,52	-0,2112		
10	32	4	1	2006	233,39	58910	981,83	-0,2112		
13	16	6	1	2006	233,38	61954	1032,57	-0,2118		
12	46	12	1	2006	233,37	70564	1176,07	-0,2125		
14	22	16	1	2006	233,37	76420	1273,67	-0,2125		
14	25	13	2	2006	233,37	116743	1945,72	-0,2125		

Quadro A2.174 Resultados do ensaio de evaporação do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.

Figura A2.174 Ensaio de evaporação do provete IMC 7.3E, após tratamento e ensaio de envelhecimento.

	PROVETE 8.1E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
12	48	24	11	2005	230,84	0	0,00	0,0000				
13	14	24	11	2005	230,75	26	0,43	-0,0059				
14	17	24	11	2005	230,72	89	1,48	-0,0079				
17	52	24	11	2005	230,59	304	5,07	-0,0164				
2	25	25	11	2005	230,26	817	13,62	-0,0381				
8	28	25	11	2005	230,01	1180	19,67	-0,0546				
13	35	25	11	2005	229,81	1487	24,78	-0,0677				
21	51	25	11	2005	229,43	1983	33,05	-0,0927				
12	8	26	11	2005	228,98	2840	47,33	-0,1223				
13	35	27	11	2005	228,71	4367	72,78	-0,1401				
20	4	28	11	2005	228,52	6196	103,27	-0,1526				
11	47	29	11	2005	228,45	7139	118,98	-0,1572				
10	28	30	11	2005	228,34	8500	141,67	-0,1644				
11	15	1	12	2005	228,23	9987	166,45	-0,1717				
13	58	2	12	2005	228,14	11590	193,17	-0,1776				
14	41	3	12	2005	228,05	13073	217,88	-0,1835				
13	23	4	12	2005	227,99	14435	240,58	-0,1874				
10	33	5	12	2005	227,93	15705	261,75	-0,1914				
10	42	6	12	2005	227,86	17154	285,90	-0,1960				
11	34	8	12	2005	227,74	20086	334,77	-0,2039				
12	31	9	12	2005	227,70	21583	359,72	-0,2065				
13	11	11	12	2005	227,60	24503	408,38	-0,2131				
10	50	13	12	2005	227,49	27242	454,03	-0,2203				
16	34	14	12	2005	227,44	29026	483,77	-0,2236				
11	47	15	12	2005	227,41	30179	502,98	-0,2256				
14	33	16	12	2005	227,38	31785	529,75	-0,2276				
10	6	19	12	2005	227,30	35838	597,30	-0,2328				
9	58	21	12	2005	227,27	38710	645,17	-0,2348				
13	21	22	12	2005	227,27	40353	672,55	-0,2348				
14	46	23	12	2005	227,25	41878	697,97	-0,2361				
14	37	24	12	2005	227,25	43309	721,82	-0,2361				
11	50	26	12	2005	227,25	46022	767,03	-0,2361				
10	52	27	12	2005	227,25	47404	790,07	-0,2361				
14	8	28	12	2005	227,25	49040	817,33	-0,2361				
11	43	30	12	2005	227,25	51775	862,92	-0,2361				
10	32	4	1	2006	227,24	58904	981,73	-0,2368				
13	17	6	1	2006	227,24	61949	1032,48	-0,2368				
12	46	12	1	2006	227,24	70558	1175,97	-0,2368				
14	23	16	1	2006	227,24	76415	1273,58	-0,2368				
14	26	13	2	2006	227,24	116738	1945,63	-0,2368				

Quadro A2.175 Resultados do ensaio de evaporação do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.

Figura A2.175 Ensaio de evaporação do provete IMC 8.1E, após tratamento e ensaio de envelhecimento.

	PROVETE 8.2E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
13	11	24	11	2005	232,07	0	0,00	0,0000				
13	29	24	11	2005	232,02	18	0,30	-0,0033				
14	21	24	11	2005	231,92	70	1,17	-0,0099				
17	56	24	11	2005	231,82	285	4,75	-0,0164				
2	35	25	11	2005	231,61	804	13,40	-0,0303				
8	32	25	11	2005	231,46	1161	19,35	-0,0401				
13	39	25	11	2005	231,26	1468	24,47	-0,0533				
21	54	25	11	2005	231,01	1963	32,72	-0,0697				
12	12	26	11	2005	230,61	2821	47,02	-0,0960				
13	38	27	11	2005	230,32	4347	72,45	-0,1151				
20	8	28	11	2005	230,24	6177	102,95	-0,1204				
11	51	29	11	2005	230,18	7120	118,67	-0,1243				
10	30	30	11	2005	230,03	8479	141,32	-0,1342				
11	19	1	12	2005	229,93	9968	166,13	-0,1407				
14	2	2	12	2005	229,83	11571	192,85	-0,1473				
14	33	3	12	2005	229,82	13042	217,37	-0,1480				
13	26	4	12	2005	229,72	14415	240,25	-0,1546				
10	37	5	12	2005	229,64	15686	261,43	-0,1598				
10	46	6	12	2005	229,59	17135	285,58	-0,1631				
11	38	8	12	2005	229,54	20067	334,45	-0,1664				
12	34	9	12	2005	229,48	21563	359,38	-0,1703				
13	14	11	12	2005	229,38	24483	408,05	-0,1769				
10	54	13	12	2005	229,30	27223	453,72	-0,1822				
16	37	14	12	2005	229,23	29006	483,43	-0,1868				
11	51	15	12	2005	229,24	30160	502,67	-0,1861				
14	38	16	12	2005	229,19	31767	529,45	-0,1894				
10	10	19	12	2005	229,11	35819	596,98	-0,1947				
10	2	21	12	2005	229,05	38691	644,85	-0,1986				
13	25	22	12	2005	229,00	40334	672,23	-0,2019				
14	49	23	12	2005	229,01	41858	697,63	-0,2012				
14	39	24	12	2005	228,97	43288	721,47	-0,2039				
11	54	26	12	2005	228,95	46003	766,72	-0,2052				
10	56	27	12	2005	228,93	47385	789,75	-0,2065				
14	11	28	12	2005	228,90	49020	817,00	-0,2085				
11	47	30	12	2005	228,90	51756	862,60	-0,2085				
10	36	4	1	2006	228,89	58885	981,42	-0,2091				
13	21	6	1	2006	228,89	61930	1032,17	-0,2091				
12	50	12	1	2006	228,85	70539	1175,65	-0,2118				
14	27	16	1	2006	228,85	76396	1273,27	-0,2118				
14	29	13	2	2006	228,85	116718	1945,30	-0,2118				

Quadro A2.176 Resultados do ensaio de evaporação do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.

Figura A2.176 Ensaio de evaporação do provete IMC 8.2E, após tratamento e ensaio de envelhecimento.

PROVETE 8.3E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	49	24	11	2005	233,16	0	0,00	0,0000			
13	15	24	11	2005	233,11	26	0,43	-0,0033			
14	17	24	11	2005	233,08	88	1,47	-0,0053			
17	52	24	11	2005	232,97	303	5,05	-0,0125			
2	25	25	11	2005	232,77	816	13,60	-0,0256			
8	28	25	11	2005	232,57	1179	19,65	-0,0388			
13	36	25	11	2005	232,41	1487	24,78	-0,0493			
21	51	25	11	2005	232,27	1982	33,03	-0,0585			
12	9	26	11	2005	231,96	2840	47,33	-0,0789			
13	36	27	11	2005	231,40	4367	72,78	-0,1157			
20	4	28	11	2005	231,10	6195	103,25	-0,1355			
11	47	29	11	2005	231,02	7138	118,97	-0,1407			
10	28	30	11	2005	230,90	8499	141,65	-0,1486			
11	15	1	12	2005	230,80	9986	166,43	-0,1552			
13	59	2	12	2005	230,71	11590	193,17	-0,1611			
14	41	3	12	2005	230,63	13072	217,87	-0,1664			
13	23	4	12	2005	230,57	14434	240,57	-0,1703			
10	34	5	12	2005	230,54	15705	261,75	-0,1723			
10	43	6	12	2005	230,48	17154	285,90	-0,1763			
11	34	8	12	2005	230,38	20085	334,75	-0,1828			
12	31	9	12	2005	230,34	21582	359,70	-0,1855			
13	12	11	12	2005	230,25	24503	408,38	-0,1914			
10	50	13	12	2005	230,18	27241	454,02	-0,1960			
16	34	14	12	2005	230,13	29025	483,75	-0,1993			
11	47	15	12	2005	230,12	30178	502,97	-0,1999			
14	34	16	12	2005	230,08	31785	529,75	-0,2026			
10	7	19	12	2005	230,00	35838	597,30	-0,2078			
9	58	21	12	2005	229,98	38709	645,15	-0,2091			
13	21	22	12	2005	229,93	40352	672,53	-0,2124			
14	46	23	12	2005	229,91	41877	697,95	-0,2137			
14	37	24	12	2005	229,90	43308	721,80	-0,2144			
11	51	26	12	2005	229,88	46022	767,03	-0,2157			
10	53	27	12	2005	229,88	47404	790,07	-0,2157			
14	8	28	12	2005	229,88	49039	817,32	-0,2157			
11	44	30	12	2005	229,87	51775	862,92	-0,2164			
12	15	2	1	2006	229,85	56126	935,43	-0,2177			
10	33	4	1	2006	229,84	58904	981,73	-0,2183			
13	18	6	1	2006	229,84	61949	1032,48	-0,2183			
12	47	12	1	2006	229,84	70558	1175,97	-0,2183			
14	23	16	1	2006	229,84	76414	1273,57	-0,2183			
14	26	13	2	2006	229,83	116737	1945,62	-0,2190			

Quadro A2.177 Resultados do ensaio de evaporação do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.

Figura A2.177 Ensaio de evaporação do provete IMC 8.3E, após tratamento e ensaio de envelhecimento.

	PROVETE 9.1E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
13	12	24	11	2005	234,06	0	0,00	0,0000				
13	30	24	11	2005	234,04	18	0,30	-0,0013				
14	21	24	11	2005	233,96	69	1,15	-0,0066				
17	56	24	11	2005	233,88	284	4,73	-0,0118				
2	36	25	11	2005	233,64	804	13,40	-0,0276				
8	32	25	11	2005	233,51	1160	19,33	-0,0362				
13	40	25	11	2005	233,35	1468	24,47	-0,0467				
21	54	25	11	2005	233,13	1962	32,70	-0,0612				
12	13	26	11	2005	232,74	2821	47,02	-0,0868				
13	38	27	11	2005	232,37	4346	72,43	-0,1111				
20	8	28	11	2005	232,16	6176	102,93	-0,1250				
11	51	29	11	2005	232,10	7119	118,65	-0,1289				
10	30	30	11	2005	231,99	8478	141,30	-0,1361				
11	19	1	12	2005	231,89	9967	166,12	-0,1427				
14	2	2	12	2005	231,81	11570	192,83	-0,1480				
14	33	3	12	2005	231,73	13041	217,35	-0,1532				
13	26	4	12	2005	231,68	14414	240,23	-0,1565				
10	37	5	12	2005	231,61	15685	261,42	-0,1611				
10	46	6	12	2005	231,55	17134	285,57	-0,1651				
11	38	8	12	2005	231,43	20066	334,43	-0,1730				
12	35	9	12	2005	231,37	21563	359,38	-0,1769				
13	14	11	12	2005	231,26	24482	408,03	-0,1841				
10	54	13	12	2005	231,20	27222	453,70	-0,1881				
16	37	14	12	2005	231,19	29005	483,42	-0,1887				
11	51	15	12	2005	231,11	30159	502,65	-0,1940				
14	38	16	12	2005	231,06	31766	529,43	-0,1973				
10	11	19	12	2005	230,98	35819	596,98	-0,2026				
10	2	21	12	2005	230,91	38690	644,83	-0,2072				
13	25	22	12	2005	230,87	40333	672,22	-0,2098				
14	50	23	12	2005	230,84	41858	697,63	-0,2118				
14	40	24	12	2005	230,80	43288	721,47	-0,2144				
11	55	26	12	2005	230,78	46003	766,72	-0,2157				
10	57	27	12	2005	230,78	47385	789,75	-0,2157				
14	11	28	12	2005	230,76	49019	816,98	-0,2170				
11	48	30	12	2005	230,71	51756	862,60	-0,2203				
10	37	4	1	2006	230,71	58885	981,42	-0,2203				
13	22	6	1	2006	230,71	61930	1032,17	-0,2203				
12	51	12	1	2006	230,68	70539	1175,65	-0,2223				
14	27	16	1	2006	230,68	76395	1273,25	-0,2223				
14	29	13	2	2006	230,68	116717	1945,28	-0,2223				

Quadro A2.178 Resultados do ensaio de evaporação do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.

Figura A2.178 Ensaio de evaporação do provete IMC 9.1E, após tratamento e ensaio de envelhecimento.

PROVETE 9.2E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S			
12	50	24	11	2005	232,70	0	0,00	0,0000			
13	15	24	11	2005	232,66	25	0,42	-0,0026			
14	18	24	11	2005	232,61	88	1,47	-0,0059			
17	53	24	11	2005	232,50	303	5,05	-0,0132			
2	26	25	11	2005	232,27	816	13,60	-0,0283			
8	29	25	11	2005	232,08	1179	19,65	-0,0408			
13	36	25	11	2005	231,91	1486	24,77	-0,0520			
21	51	25	11	2005	231,65	1981	33,02	-0,0691			
12	9	26	11	2005	231,34	2839	47,32	-0,0894			
13	36	27	11	2005	230,79	4366	72,77	-0,1256			
20	5	28	11	2005	230,53	6195	103,25	-0,1427			
11	48	29	11	2005	230,44	7138	118,97	-0,1486			
10	28	30	11	2005	230,32	8498	141,63	-0,1565			
11	16	1	12	2005	230,21	9986	166,43	-0,1638			
13	59	2	12	2005	230,11	11589	193,15	-0,1703			
14	41	3	12	2005	230,03	13071	217,85	-0,1756			
13	24	4	12	2005	229,95	14434	240,57	-0,1809			
10	34	5	12	2005	229,89	15704	261,73	-0,1848			
10	43	6	12	2005	229,85	17153	285,88	-0,1874			
11	35	8	12	2005	229,72	20085	334,75	-0,1960			
12	32	9	12	2005	229,67	21582	359,70	-0,1993			
13	12	11	12	2005	229,57	24502	408,37	-0,2058			
10	51	13	12	2005	229,50	27241	454,02	-0,2105			
16	34	14	12	2005	229,46	29024	483,73	-0,2131			
11	48	15	12	2005	229,39	30178	502,97	-0,2177			
14	34	16	12	2005	229,39	31784	529,73	-0,2177			
10	7	19	12	2005	229,30	35837	597,28	-0,2236			
9	59	21	12	2005	229,29	38709	645,15	-0,2243			
13	22	22	12	2005	229,29	40352	672,53	-0,2243			
14	46	23	12	2005	229,29	41876	697,93	-0,2243			
14	38	24	12	2005	229,28	43308	721,80	-0,2249			
11	51	26	12	2005	229,28	46021	767,02	-0,2249			
10	53	27	12	2005	229,28	47403	790,05	-0,2249			
14	8	28	12	2005	229,28	49038	817,30	-0,2249			
11	44	30	12	2005	229,28	51774	862,90	-0,2249			
12	15	2	1	2006	229,27	56125	935,42	-0,2256			
10	33	4	1	2006	229,27	58903	981,72	-0,2256			
13	18	6	1	2006	229,27	61948	1032,47	-0,2256			
12	47	12	1	2006	229,27	70557	1175,95	-0,2256			
14	24	16	1	2006	229,27	76414	1273,57	-0,2256			
14	26	13	2	2006	229,27	116736	1945,60	-0,2256			

Quadro A2.179 Resultados do ensaio de evaporação do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.

Figura A2.179 Ensaio de evaporação do provete IMC 9.2E, após tratamento e ensaio de envelhecimento.

	PROVETE 9.3E											
HORA	MINUTO	DIA	MÊS	ANO	PESO	MINUTOS	HORAS	dW/S				
13	14	24	11	2005	232,81	0	0,00	0,0000				
13	46	24	11	2005	232,80	32	0,53	-0,0007				
14	22	24	11	2005	232,71	68	1,13	-0,0066				
17	57	24	11	2005	232,60	283	4,72	-0,0138				
2	37	25	11	2005	232,36	803	13,38	-0,0296				
8	33	25	11	2005	232,20	1159	19,32	-0,0401				
13	40	25	11	2005	232,05	1466	24,43	-0,0500				
21	55	25	11	2005	231,85	1961	32,68	-0,0631				
12	13	26	11	2005	231,49	2819	46,98	-0,0868				
13	38	27	11	2005	231,14	4344	72,40	-0,1098				
20	8	28	11	2005	230,95	6174	102,90	-0,1223				
11	51	29	11	2005	230,87	7117	118,62	-0,1276				
10	31	30	11	2005	230,76	8477	141,28	-0,1348				
11	20	1	12	2005	230,67	9966	166,10	-0,1407				
14	3	2	12	2005	230,61	11569	192,82	-0,1447				
14	33	3	12	2005	230,51	13039	217,32	-0,1513				
13	26	4	12	2005	230,45	14412	240,20	-0,1552				
10	37	5	12	2005	230,38	15683	261,38	-0,1598				
10	46	6	12	2005	230,31	17132	285,53	-0,1644				
11	39	8	12	2005	230,22	20065	334,42	-0,1703				
12	35	9	12	2005	230,17	21561	359,35	-0,1736				
13	14	11	12	2005	230,03	24480	408,00	-0,1828				
10	55	13	12	2005	229,98	27221	453,68	-0,1861				
16	38	14	12	2005	229,95	29004	483,40	-0,1881				
11	51	15	12	2005	229,88	30157	502,62	-0,1927				
14	38	16	12	2005	229,87	31764	529,40	-0,1934				
10	11	19	12	2005	229,78	35817	596,95	-0,1993				
10	3	21	12	2005	229,74	38689	644,82	-0,2019				
13	25	22	12	2005	229,71	40331	672,18	-0,2039				
14	50	23	12	2005	229,70	41856	697,60	-0,2045				
14	40	24	12	2005	229,69	43286	721,43	-0,2052				
11	55	26	12	2005	229,69	46001	766,68	-0,2052				
10	57	27	12	2005	229,69	47383	789,72	-0,2052				
14	12	28	12	2005	229,67	49018	816,97	-0,2065				
11	48	30	12	2005	229,66	51754	862,57	-0,2072				
10	37	4	1	2006	229,66	58883	981,38	-0,2072				
13	22	6	1	2006	229,66	61928	1032,13	-0,2072				
12	51	12	1	2006	229,66	70537	1175,62	-0,2072				
14	28	16	1	2006	229,66	76394	1273,23	-0,2072				
14	30	13	2	2006	229.66	116716	1945.27	-0,2072				

Quadro A2.180 Resultados do ensaio de evaporação do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.

Figura A2.180 Ensaio de evaporação do provete IMC 9.3E, após tratamento e ensaio de envelhecimento.